toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bas i Beneito, A.; Herrero-Garcia, J.; Vatsyayan, D. url  doi
openurl 
  Title Multi-component dark sectors: symmetries, asymmetries and conversions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 075 - 31pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter  
  Abstract (down) We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.  
  Address [Bas I Beneito, Arnau] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: arnau.bas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866484800002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5380  
Permanent link to this record
 

 
Author Bhattacharya, S.; Sil, A.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Symmetry origin of baryon asymmetry, dark matter, and neutrino mass Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075005 - 10pp  
  Keywords  
  Abstract (down) We propose a minimal model based on lepton number symmetry (and violation), to address a common origin of baryon asymmetry, dark matter and neutrino mass generation. The model consists of a vectorlike fermion to constitute the dark sector, three right-handed neutrinos (RHNs) to dictate leptogenesis and neutrino mass, while an additional complex scalar is assumed to be present in the early Universe the decay of which produces both dark matter and RHNs via lepton number violating and lepton number conserving interactions respectively. Interestingly, the presence of the same scalar helps in making the electroweak vacuum stable until the Planck scale. The unnatural largeness and smallness of the parameters required to describe correct experimental limits are attributed to lepton number violation. The allowed parameter space of the model is illustrated via a numerical scan.  
  Address [Bhattacharya, Subhaditya; Sil, Arunansu] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000874548200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5402  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Triple collinear splitting functions at NLO for scattering processes with photons Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 161 - 29pp  
  Keywords NLO Computations  
  Abstract (down) We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347905900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2082  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Genel, S.; Angles-Alcazar, D.; Hernquist, L.; Marinacci, F.; Spergel, D.N.; Vogelsberger, M.; Narayanan, D. url  doi
openurl 
  Title Weighing the Milky Way and Andromeda galaxies with artificial intelligence Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 10 Pages 103003 - 8pp  
  Keywords  
  Abstract (down) We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.  
  Address [Villanueva-Domingo, Pablo; Narayanan, Desika] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988340900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5539  
Permanent link to this record
 

 
Author de Florian, D.; Sassot, R.; Epele, M.; Hernandez-Pinto, R.J.; Stratmann, M. url  doi
openurl 
  Title Parton-to-pion fragmentation reloaded Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 1 Pages 014035 - 17pp  
  Keywords  
  Abstract (down) We present a new, comprehensive global analysis of parton-to-pion fragmentation functions at next-to-leading-order accuracy in QCD. The obtained results are based on the latest experimental information on single-inclusive pion production in electron-positron annihilation, lepton-nucleon deep-inelastic scattering, and proton-proton collisions. An excellent description of all data sets is achieved, and the remaining uncertainties in parton-to-pion fragmentation functions are estimated based on the Hessian method. Extensive comparisons to the results from our previous global analysis are performed.  
  Address [de Florian, Daniel; Sassot, R.; Hernandez-Pinto, Roger J.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: deflo@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348679000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva