|   | 
Details
   web
Records
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.
Title Minimal flavor violation in the see-saw portal Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 185 - 28pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract (down) We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.
Address [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000546965800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4462
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B.
Title The see-saw portal at future Higgs Factories Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 117 - 32pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract (down) We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.
Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000629645800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4766
Permanent link to this record
 

 
Author Han, C.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.; Wu, L.; Yang, J.M.
Title LFV and (g-2) in non-universal SUSY models with light higgsinos Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 102 - 32pp
Keywords Precision QED; Supersymmetric Standard Model; GUT; Neutrino Physics
Abstract (down) We consider a supersymmetric type-I seesaw framework with non-universal scalar masses at the GUT scale to explain the long-standing discrepancy of the anomalous magnetic moment of the muon. We find that it is difficult to accommodate the muon g-2 while keeping charged-lepton flavor violating processes under control for the conventional SO(10)-based relation between the up sector and neutrino sector. However, such tension can be relaxed by adding a Georgi-Jarlskog factor for the Yukawa matrices, which requires a non-trivial GUT-based model. In this model, we find that both observables are compatible for small mixings, CKM-like, in the neutrino Dirac Yukawa matrix.
Address [Han, C.] KIAS, Sch Phys, 85 Hoegiro, Seoul 02455, South Korea, Email: hancheng@itp.ac.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000537114700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4421
Permanent link to this record
 

 
Author Eberhardt, O.; Miralles, V.; Pich, A.
Title Constraints on coloured scalars from global fits Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 123 - 23pp
Keywords Beyond Standard Model; Higgs Physics
Abstract (down) We consider a simple extension of the electroweak theory, incorporating one SU(2)(L) doublet of colour-octet scalars with Yukawa couplings satisfying the principle of minimal flavour violation. Using the HEPfit package, we perform a global fit to the available data, including all relevant theoretical constraints, and extract the current bounds on the model parameters. Coloured scalars with masses below 1.05 TeV are already excluded, provided they are not fermiophobic. The mass splittings among the different (charged and CP-even and CP-odd neutral) scalars are restricted to be smaller than 20 GeV. Moreover, for scalar masses smaller than 1.5 TeV, the Yukawa coupling of the coloured scalar multiplet to the top quark cannot exceed the one of the SM Higgs doublet by more than 80%. These conclusions are quite generic and apply in more general frameworks (without fine tunings). The theoretical requirements of perturbative unitarity and vacuum stability enforce relevant constraints on the quartic scalar potential parameters that are not yet experimentally tested.
Address [Eberhardt, Otto; Miralles, Victor; Pich, Antonio] Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: otto.eberhardt.physics@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000708483600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5006
Permanent link to this record
 

 
Author Bernard, V.; Descotes-Genon, S.; Vale Silva, L.
Title Constraining the gauge and scalar sectors of the doublet left-right symmetric model Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 088 - 64pp
Keywords Beyond Standard Model; GUT
Abstract (down) We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak rho parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon Delta r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU (2)(L) x SU (2)(R) bi-doublet, which is the case most commonly considered in the literature, but also by the SU (2)(L) doublet.
Address [Bernard, Veronique] Univ Paris Saclay, Univ Paris Sud, Grp Phys Theor, Inst Phys Nucl,UMR 8606,CNRS, F-91405 Orsay, France, Email: veronique.bernard@ijclab.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000569357600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4533
Permanent link to this record