toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Accettura, C. et al; Zurita, J url  doi
openurl 
  Title Towards a muon collider Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 9 Pages 864 - 110pp  
  Keywords  
  Abstract (up) A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.  
  Address [Accettura, Carlotta; Ahdida, Claudia; Amorim, David; Batsch, Fabian; Bertarelli, Alessandro; Boattini, Fulvio; Bordini, Bernardo; Bottura, Luca; Buffat, Xavier; Calviani, Marco; Calzolari, Daniele; Carli, Christian; Damerau, Heiko; de Blas, Jorge; Delahaye, Jean-Pierre; Dudarev, Alexey; Somoza, Jose Antonio Ferreira; Fol, Elena; Ximenes, Rui Franqueira; Gilardoni, Simone; Grudiev, Alexej; Karpov, Ivan; Kolehmainen, Antti; Lechner, Anton; Losito, Roberto; Mentink, Matthias; Metral, Elias; Mulder, Tim; Neufeld, Niko; Robens, Tania Natalie; Esteban, Francisco Javier Saura; Schulte, Daniel; Selvaggi, Michele; Simoniello, Rosa; Skoufaris, Kyriacos; Stapnes, Steinar; Stechauner, Bernd; Verweij, Arjan; Wozniak, Mariusz] Org Europeenne Rech Nucl CERN, CH-1211 Geneva 23, Switzerland, Email: a.wulzer@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001191052200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6008  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of a Narrow Pentaquark State, P-c(4312)(+), and of the Two-Peak Structure of the P-c(4450)(+) Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 22 Pages 222001 - 11pp  
  Keywords  
  Abstract (up) A narrow pentaquark state, P-c(4312)(+), decaying to J/psi p, is discovered with a statistical significance of 7.3 sigma in a data sample of Lambda(0)(b) -> J/psi pK(-) decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration. The P-c(4450)(+) pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, P-c(4440)(+) and P-c(4457)(+), where the statistical significance of this two-peak interpretation is 5.4 sigma. The proximity of the Sigma(+)(c)(D) over bar (0) and Sigma(+)(c)(D) over bar (*0) thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470882900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4053  
Permanent link to this record
 

 
Author CALICE Collaboration (Lai, S. et al); Irles, A. url  doi
openurl 
  Title Software compensation for highly granular calorimeters using machine learning Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 4 Pages P04037 - 28pp  
  Keywords Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract (up) A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.  
  Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001230094600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6128  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of a new baryon state in the Lambda(0)(b)pi(+)pi(-) mass spectrum Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 136 - 26pp  
  Keywords B physics; Hadron-Hadron scattering (experiments); Heavy quark production; Spectroscopy  
  Abstract (up) A new baryon state is observed in the Lambda(0)(b)pi(+)pi(-) mass spectrum with high significance using a data sample of pp collisions, collected with the LHCb detector at centre-of-mass energies root s = 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb(-1). The mass and natural width of the new state are measured to be m = 6072.3 +/- 2.9 +/- 0.6 +/- 0.2 MeV, Gamma = 72 +/- 11 +/- 2 MeV, where the first uncertainty is statistical and the second systematic. The third uncertainty for the mass is due to imprecise knowledge of the Lambda(0)(b) baryon mass. The new state is consistent with the first radial excitation of the Lambda(0)(b) baryon, the Lambda(b)(2S)(0) resonance. Updated measurements of the masses and the upper limits on the natural widths of the previously observed Lambda(b)(5912)(0) and Lambda(b)(5920)(0) states are also reported.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000545673000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4453  
Permanent link to this record
 

 
Author IDS Collaboration (Andel, B. et al); Algora, A.; Nacher, E. doi  openurl
  Title New beta-decaying state in Bi-214 Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 5 Pages 054301 - 13pp  
  Keywords  
  Abstract (up) A new beta-decaying state in Bi-214 has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred I-pi = (8(-)) assignment was suggested for this state based on the beta-decay feeding pattern to levels in Po-214 and shell-model calculations. The half-life of the I-pi = (8) state was deduced to be T-1/2 = 9.39(10) min. The deexcitation of the levels populated in Po-214 by the beta decay of this state was investigated via gamma-gamma coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in Bi-214 and Po-214 were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both calculations agree on the interpretation of the new beta-decaying state as an I-pi = 8 – isomer and allow for tentative assignment of shell-model states to several high-spin states in Po-214.  
  Address [Andel, B.; Van Duppen, P.; Stryjczyk, M.; De Witte, H.; Huyse, M.; Rezynkina, K.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Leuven, Belgium, Email: boris.andel@fmph.uniba.sk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000716453000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5019  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva