|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in pp collisions at root s=13 TeV using the ATLAS detector Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 033 - 76pp
Keywords Hadron-Hadron scattering (experiments); Top physics
Abstract (up) Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton-proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton-proton collisions at root s = 13 TeV collected by the ATLAS detector at CERN's Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000607134800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4681
Permanent link to this record
 

 
Author NEXT Collaboration (Martinez-Lema, G. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Sensitivity of the NEXT experiment to Xe-124 double electron capture Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 203 - 25pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract (up) Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite different, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture (2 nu EC EC) has been predicted for a number of isotopes, but only observed in Kr-78, Ba-130 and, recently, Xe-124. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process, 0 nu EC EC. Here we report on the current sensitivity of the NEXT-White detector to Xe-124 2 nu EC EC and on the extrapolation to NEXT-100. Using simulated data for the 2 nu EC EC signal and real data from NEXT-White operated with Xe-124-depleted gas as background, we define an optimal event selection that maximizes the NEXT-White sensitivity. We estimate that, for NEXT-100 operated with xenon gas isotopically enriched with 1 kg of Xe-124 and for a 5-year run, a sensitivity to the 2 nu EC EC half-life of 6 x 10(22) y (at 90% confidence level) or better can be reached.
Address [Goldschmidt, A.; Hauptman, J.; Laing, A.; Martinez, A.; Para, A.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@weizmann.ac.il
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000624564800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4749
Permanent link to this record
 

 
Author Fuentes-Martin, J.; Ruiz-Femenia, P.; Vicente, A.; Virto, J.
Title DsixTools 2.0: the effective field theory toolkit Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 2 Pages 167 - 30pp
Keywords
Abstract (up) DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
Address [Fuentes-Martin, Javier] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany, Email: jvirto@ub.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620648200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4735
Permanent link to this record
 

 
Author Aiola, S.; Bandiera, L.; Cavoto, G.; De Benedetti, F.; Fu, J.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez-Vidal, F.; Mascagna, V.; Mazorra de Cos, J.; Mazzolari, A.; Merli, A.; Neri, N.; Prest, M.; Romagnoni, M.; Ruiz Vidal, J.; Soldani, M.; Sytov, A.; Tikhomirov, V.; Vallazza, E.
Title Progress towards the first measurement of charm baryon dipole moments Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 7 Pages 072003 - 15pp
Keywords
Abstract (up) Electromagnetic dipole moments of short-lived particles are sensitive to physics within and beyond the Standard Model of particle physics but have not been accessible experimentally to date. To perform such measurements it has been proposed to exploit the spin precession of channeled particles in bent crystals at the LHC. Progress that enables the first measurement of charm baryon dipole moments is reported. In particular, the design and characterization on beam of silicon and germanium bent crystal prototypes, the optimization of the experimental setup, and advanced analysis techniques are discussed. Sensitivity studies show that first measurements of Lambda(+)(c) and Xi(+)(c) baryon dipole moments can he performed in two years of data taking with an experimental setup positioned upstream of the LHCb detector.
Address [Aiola, S.; De Benedetti, F.; Fu, J.; Henry, L.; Marangotto, D.; Merli, A.; Neri, N.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000648575400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4835
Permanent link to this record
 

 
Author Tonev, D. et al; Gadea, A.
Title Transition probabilities in P-31 and S-31: A test for isospin symmetry Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 821 Issue Pages 136603 - 6pp
Keywords Mirror nuclei; Lifetime measurements; Transition probabilities; Isospin symmetry; Microscopic multiphonon model
Abstract (up) Excited states in the mirror nuclei P-31 and S-31 were populated in the 1p and 1n exit channels of the reaction Ne-20 + C-12, at a beam energy of 33 MeV. The Ne-20 beam was delivered for the first time by the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. Angular correlations of coincident gamma-rays and Doppler-shift attenuation lifetime measurements were performed using the multi-detector array GASP in conjunction with the EUCLIDES charged particle detector. In the observed B(E1) strengths, the isoscalar component, amounting to 24% of the isovector one, provides strong evidence for breaking of the isospin symmetry in the A = 31 mass region. Self-consistent beyond mean field calculations using Equation of Motion method based on a chiral potential and including two- and three-body forces reproduce well the experimental B(E1) strengths, reinforcing our conclusion. Coherent mixing from higher-lying states involving the Giant Isovector Monopole Resonance accounts well for the effect observed. The breaking of the isospin symmetry originates from the violation of the charge symmetry of the two- and three-body parts of the potential, only related to the Coulomb interaction.
Address [Tonev, D.; Goutev, N.; Pavlov, P.; Pantaleev, I. L.; Iliev, S.; Yavahchova, M. S.; Demerdjiev, A.; Dimitrov, D. T.; Geleva, E.; Laftchiev, H.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria, Email: dimitar.tonev@inrne.bas.bg
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734909800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5064
Permanent link to this record