|   | 
Details
   web
Records
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Hawking Radiation by Kerr Black Holes and Conformal Symmetry Type Journal Article
Year 2010 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 105 Issue 21 Pages 211305 - 4pp
Keywords
Abstract (down) The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.
Address [Agullo, Ivan; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes ISI:000284407400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 322
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D.
Title Scalar geons in Born-Infeld gravity Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 031 - 35pp
Keywords modified gravity; Wormholes
Abstract (down) The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r = 2 M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
Address [Afonso, V. I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000408311900031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3285
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Palatini f(R) black holes in nonlinear electrodynamics Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 12 Pages 124059 - 14pp
Keywords
Abstract (down) The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298666600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 878
Permanent link to this record
 

 
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D.
Title Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 11 Pages 2108 - 24pp
Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields
Abstract (down) The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.
Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000726717400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5040
Permanent link to this record
 

 
Author Lobo, F.S.N.; Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title Dynamical generation of wormholes with charged fluids in quadratic Palatini gravity Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 2 Pages 024033 - 15pp
Keywords
Abstract (down) The dynamical generation of wormholes within an extension of General Relativity (GR) containing (Planck's scale-suppressed) Ricci-squared terms is considered. The theory is formulated assuming the metric and connection to be independent (Palatini formalism) and is probed using a charged null fluid as a matter source. This has the following effect: starting from Minkowski space, when the flux is active the metric becomes a charged Vaidya-type one, and once the flux is switched off the metric settles down into a static configuration such that far from the Planck scale the geometry is virtually indistinguishable from that of the standard Reissner-Nordstrom solution of GR. However, the innermost region undergoes significant changes, as the GR singularity is generically replaced by a wormhole structure. Such a structure becomes completely regular for a certain charge-to-mass ratio. Moreover, the nontrivial topology of the wormhole allows us to define a charge in terms of lines of force trapped in the topology such that the density of lines flowing across the wormhole throat becomes a universal constant. In light of our results, we comment on the physical significance of curvature divergences in this theory and the topology change issue, which support the view that space-time could have a foamlike microstructure pervaded by wormholes generated by quantum gravitational effects.
Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000343305600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1979
Permanent link to this record