toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anzivino, G. et al; Gonzalez-Alonso, M.; Passemar, E.; Pich, A. url  doi
openurl 
  Title Workshop summary: Kaons@CERN 2023 Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 4 Pages 377 - 34pp  
  Keywords  
  Abstract (up) Kaon physics is at a turning point – while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop, held in September 2023 at CERN.  
  Address [Anzivino, G.] Univ Perugia, Dipartimento Fis & Geol, Via A Pascoli, I-06123 Perugia, Italy  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201845600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6117  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Muñoz Perez, D.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11027 - 18pp  
  Keywords Cherenkov detectors; Manufacturing; Overall mechanics design (support structures and materials, vibration analysis etc); Special cables  
  Abstract (up) KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings – detection units or strings – equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema (R) ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: eberbee@km3net.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4632  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Ageron, M. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 2 Pages 99 - 11pp  
  Keywords  
  Abstract (up) KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained.  
  Address [Ageron, M.; Bertin, V.; Billault, M.; Brunner, J.; Busto, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Domi, A.; Dornic, D.; Enzenhofer, A.; Henry, S.; Keller, P.; Lamare, P.; Laurence, J.; Lincetto, M.; Maggi, G.; Perrin-Terrin, M.; Quinn, L.; Royon, J.; Salvadori, I.; Tezier, D.; Theraube, S.; Zaborov, D.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: simone.biagi@infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000514581600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4302  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Lotze, M.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources Type Journal Article
  Year 2019 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 111 Issue Pages 100-110  
  Keywords Astrophysical neutrino sources; Cherenkov underwater neutrino telescope; KM3NeT  
  Abstract (up) KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an E(-2 )spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with 3 sigma significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.; Tatone, F.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sapienza@lns.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470047300008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4047  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 180 - 26pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract (up) KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles theta(14), theta(24), theta(34) and the effective angle theta(mu e), over a broad range of mass squared difference Delta m(41)(2) similar to [10(-5), 10] eV(2), allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: jcoelho@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000710339200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5010  
Permanent link to this record
 

 
Author Coogan, A.; Bertone, G.; Gaggero, D.; Kavanagh, B.J.; Nichols, D.A. url  doi
openurl 
  Title Measuring the dark matter environments of black hole binaries with gravitational waves Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 4 Pages 043009 - 22pp  
  Keywords  
  Abstract (up) Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This “dark dress” inevitably affects the dynamical evolution of binary systems and induces a dephasing in the gravitational waveform that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in the presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.  
  Address [Coogan, Adam; Bertone, Gianfranco] Univ Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: adam.coogan@umontreal.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000761177900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5154  
Permanent link to this record
 

 
Author Karan, A.; Sinha, R.; Mandal, R. url  doi
openurl 
  Title Testing WW gamma vertex in radiative muon decay Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 3 Pages 033006 - 9pp  
  Keywords  
  Abstract (up) Large numbers of muons will be produced at facilities developed to probe the lepton-flavor-violating process μ-> e gamma. We show that by constructing a suitable asymmetry, radiative muon decay μ-> e gamma nu(mu)(nu) over bar (e) can also be used to test the WW gamma vertex at such facilities. The process has two missing neutrinos in the final state, and upon integrating their momenta the partial differential decay rate shows no radiation-amplitude zero. However, we establish that an easily separable part of the normalized differential decay rate that is odd under the exchange of photon and electron energies does have a zero in the case of the standard model (SM). This new type of zero has hitherto not been studied in the literature. A suitably constructed asymmetry using this fact enables a sensitive probe for the WW gamma vertex beyond the SM. With a simplistic analysis, we find that the C- and P-conserving dimension-four WW gamma vertex can be probed at O(10(-2)) with a satisfactory significance level.  
  Address [Karan, Anirban; Sinha, Rahul] Inst Math Sci, Chennai 600113, India, Email: kanirban@imsc.res.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000458370800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3907  
Permanent link to this record
 

 
Author Del Debbio, L.; Ramos, A. url  doi
openurl 
  Title Lattice determinations of the strong coupling Type Journal Article
  Year 2021 Publication Physics Reports Abbreviated Journal Phys. Rep.-Rev. Sec. Phys. Lett.  
  Volume 920 Issue Pages 1-71  
  Keywords QCD; Renormalization; Strong coupling; Lattice field theory  
  Abstract (up) Lattice QCD has reached a mature status. State of the art lattice computations include u, d, s (and even the c) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology. Crown Copyright & nbsp;(c) 2021 Published by Elsevier B.V. All rights reserved.  
  Address [Del Debbio, Luigi] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland, Email: luigi.del.debbio@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000659901700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4843  
Permanent link to this record
 

 
Author Horak, J.; Ihssen, F.; Papavassiliou, J.; Pawlowski, J.M.; Weber, A.; Wetterich, C. url  doi
openurl 
  Title Gluon condensates and effective gluon mass Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 13 Issue 2 Pages 042 - 40pp  
  Keywords  
  Abstract (up) Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an SU(3) gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.  
  Address [Horak, Jan; Ihssen, Friederike; Pawlowski, Jan M.; Weber, Axel; Wetterich, Christof] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863121000008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5379  
Permanent link to this record
 

 
Author Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 095033 - 13pp  
  Keywords  
  Abstract (up) Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000535451000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4403  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva