toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J. url  doi
openurl 
  Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 019 - 31pp  
  Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations  
  Abstract (up) Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.  
  Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303665000019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1016  
Permanent link to this record
 

 
Author Oset, E.; Ramos, A.; Garzon, E.J.; Molina, R.; Tolos, L.; Xiao, C.W.; Wu, J.J.; Zou, B.S. url  doi
openurl 
  Title Interaction of vector mesons with baryons and nuclei Type Journal Article
  Year 2012 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 21 Issue 11 Pages 1230011 - 18pp  
  Keywords Vector-baryon interaction; vectors in medium; J/psi suppression in nuclei  
  Abstract (up) After some short introductory remarks on particular issues on the vector mesons in nuclei, in this paper, we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei from a modern perspective using the local hidden gauge formalism for the interaction of vector mesons. We present results for the vector-baryon interaction and in particular for the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons, taking also the mixing of these states with pseudoscalars and baryons into account. We then venture into the charm sector, reporting on hidden charm baryon states around 4400 MeV, generated from the interaction of vector mesons and baryons with charm, which have a strong repercussion on the properties of the J/Psi N interaction. We also address the interaction of K* with nuclei and make suggestions to measure the predicted huge width in the medium by means of transparency ratio. The formalism is extended to study the phenomenon of J/psi suppression in nuclei via J/psi photo-production reactions.  
  Address [Oset, E.; Garzon, E. J.; Xiao, C. W.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: oset@ific.uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310855800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1204  
Permanent link to this record
 

 
Author HADES Collaboration (Lapidus, K. et al); Diaz, J.; Gil, A. doi  openurl
  Title The HADES-at-FAIR project Type Journal Article
  Year 2012 Publication Physics of Atomic Nuclei Abbreviated Journal Phys. Atom. Nuclei  
  Volume 75 Issue 5 Pages 589-593  
  Keywords  
  Abstract (up) After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES.  
  Address [Lapidus, K.; Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Muenzer, R.; Schmah, A.; Siebenson, J.] Excellence Cluster Origin & Struct Universe, Garching, Germany, Email: kirill.lapidus@ph.tum.de  
  Corporate Author Thesis  
  Publisher Maik Nauka/Interperiodica/Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7788 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304621800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1046  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Bernabeu, J.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Observation of Time-Reversal Violation in the B-0 Meson System Type Journal Article
  Year 2012 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 109 Issue 21 Pages 211801 - 8pp  
  Keywords  
  Abstract (up) Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B-0 or (B) over bar (0)), and J/psi K-L(0) or c (c) over barK(S)(0) final states (referred to as B+ or B-), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, (B) over bar (0) -> B- and B- -> (B) over bar (0), as a function of the time difference between the two B decays. Using 468 X 10(6) B (B) over bar pairs produced in Y(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding Delta S-T(+) = -137 +/- 0.14(stat) +/- 0.06(syst) and Delta S-T(-) = 1.17 +/- 0.18(stat) +/- 0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311283800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1220  
Permanent link to this record
 

 
Author Ledwig, T.; Martin-Camalich, J.; Pascalutsa, V.; Vanderhaeghen, M. url  doi
openurl 
  Title Nucleon and Delta(1232) form factors at low momentum transfer and small pion masses Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 3 Pages 034013 - 25pp  
  Keywords  
  Abstract (up) An expansion of the electromagnetic form factors of the nucleon and Delta(1232) in small momentum transfer and pion mass is performed in a manifestly covariant EFT framework consistent with chiral symmetry and analyticity. We present the expressions for the nucleon and Delta(1232) electromagnetic form factors, charge radii, and electromagnetic moments in the framework of SU(2) baryon chiral perturbation theory, with nucleon and Delta-isobar degrees of freedom, to next-to-leading order. Motivated by the results for the proton electric radius obtained from the muonic-hydrogen atom and electron-scattering process, we extract values for the second derivative of the electric form factor which is a genuine prediction of the p(3) B chi PT. The chiral behavior of radii and moments is studied and compared to that obtained in the heavy-baryon framework and lattice QCD. The chiral behavior of Delta(1232)-isobar properties exhibits cusps and singularities at the threshold of Delta -> pi N decay, and their physical significance is discussed.  
  Address [Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany, Email: ledwig@kph.uni-mainz.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300093200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 894  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva