|   | 
Details
   web
Records
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Low-mass dark matter search using ionization signals in XENON100 Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 9 Pages 092001 - 6pp
Keywords
Abstract (down) We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.
Address [Aprile, E.; Anthony, M.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: ran.budnik@weizmann.ac.il;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000386772500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2845
Permanent link to this record
 

 
Author Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.
Title Partial-wave decomposition of the finite-range effective tensor interaction Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 6 Pages 064001 - 6pp
Keywords
Abstract (down) We perform a detailed analysis of the properties of the finite-range tensor term associated with the Gogny and M3Y effective interactions. In particular, by using a partial-wave decomposition of the equation of state of symmetric nuclear matter, we show how we can extract their tensor parameters directly from microscopic results based on bare nucleon-nucleon interactions. Furthermore, we show that the zero-range limit of both finite-range interactions has the form of the next-to-next-to-next-leading-order (N3LO) Skyrme pseudopotential, which thus constitutes a reliable approximation in the density range relevant for finite nuclei. Finally, we use Brueckner-Hartree-Fock results to fix the tensor parameters for the three effective interactions.
Address [Davesne, D.; Becker, P.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000377302500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2718
Permanent link to this record
 

 
Author Xie, J.J.; Liang, W.H.; Oset, E.
Title (K)over-bar-induced formation of the f(0)(980) and a(0)(980) resonances on proton targets Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 3 Pages 035206 - 8pp
Keywords
Abstract (down) We perform a calculation of the cross section for nine reactions induced by (K) over bar scattering on protons. The reactions studied are K- p -> Lambda pi(+)pi(-), K- p -> Sigma(0)pi(+)pi(-), K- p -> Lambda pi(0)eta, K- p -> Sigma(0)pi(0)eta, K- p -> Sigma(+)pi(-)eta, (K) over bar (0) p -> Lambda pi(+)eta, (K) over bar (0) p -> Sigma(0)pi(+)eta, (K) over bar (0) p -> Sigma(+)pi(+)pi(-), and (K) over bar (0) p -> Sigma+pi(0)eta. We find that in the reactions producing pi(+)pi(-), a clear peak for the f(0)(980) resonance is found, while no trace of f(0)(500) appears. Similarly, in the cases of p. production, a strong peak is found for the a(0)(980) resonance, with the characteristic strong cusp shape. Cross sections and invariant mass distributions are evaluated which should serve, by comparing them with future data, to test the dynamics of the chiral unitary approach used for the evaluations and the nature of these resonances.
Address [Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: xiejujun@impcas.ac.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000372719900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2605
Permanent link to this record
 

 
Author Bulava, J.; Della Morte, M.; Heitger, J.; Wittemeier, C.
Title Nonperturbative renormalization of the axial current in N-f=3 lattice QCD with Wilson fermions and a tree-level improved gauge action Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 11 Pages 114513 - 7pp
Keywords
Abstract (down) We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with N-f = 3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrodinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of approximate to 0.09 fm and below. An interpolation formula for Z(A)(g(0)(2)) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
Address [Bulava, John] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000378203800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2733
Permanent link to this record
 

 
Author Mijatovic, T.; Szilner, S.; Corradi, L.; Montanari, D.; Pollarolo, G.; Fioretto, E.; Gadea, A.; Goasduff, A.; Malenica, D.J.; Marginean, N.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Soic, N.; Stefanini, A.M.; Ur, C.A.; Valiente-Dobon, J.J.
Title Multinucleon transfer reactions in the Ar-40+Pb-208 system Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 94 Issue 6 Pages 064616 - 7pp
Keywords
Abstract (down) We measured multinucleon transfer reactions in the Ar-40 + Pb-208 system at an energy close to the Coulomb barrier, by employing the PRISMA magnetic spectrometer. We extracted differential and total cross sections of the different transfer channels, with a careful investigation of the total kinetic energy loss distributions. Comparisons between different systems having the same Pb-208 target and with projectiles going from neutron-poor to neutron-rich nuclei, i.e., Ca-40, Ni-58, and Ar-40, as well as between the data and GRAZING calculations have been carried out. The neutron-rich (stable) Ar-40 beam allowed us to get access to the channels involving proton pickup, whose behavior in connection with the production of neutron-rich heavy partner has been outlined.
Address [Mijatovic, T.; Szilner, S.; Malenica, D. Jelavic; Soic, N.] Rudjer Boskovic Inst, Zagreb, Croatia, Email: Tea.Mijatovic@irb.hr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000391015500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2907
Permanent link to this record