|   | 
Details
   web
Records
Author Barucca, G. et al; Diaz, J.
Title The potential of Lambda and Xi(-) studies with PANDA at FAIR Type Journal Article
Year 2021 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 57 Issue 4 Pages 154 - 26pp
Keywords
Abstract (down) The antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss groundstate hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: (p) over barp -> (Lambda) over bar Lambda and (p) over barp -> (Xi) over bar+Xi(-). The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA.
Address [Barucca, G.; Davi, F.; Lancioni, G.; Mengucci, P.; Montalto, L.; Natali, P. P.; Paone, N.; Rinaldi, D.; Scalise, L.] Univ Politecn Marche Ancona, Ancona, Italy, Email: karin.schonning@physics.uu.se
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000645914600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4799
Permanent link to this record
 

 
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement of the prompt fission γ-rays from slow neutron-induced fission of 235U with STEFF Type Journal Article
Year 2024 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 60 Issue 3 Pages 70 - 11pp
Keywords
Abstract (down) The amount of energy carried by gamma-rays during the fission process is an important consideration when developing new reactor designs. Many studies of gamma-ray energy and multiplicity, from a multitude of fissioning systems, were measured during the 1970s. However the data from such experiments largely underestimates the heating effect caused by gamma-rays in the structure of a reactor. It is therefore essential to obtain more accurate measurements of the energy carried during gamma-ray emission. As such, the OECD Nuclear Energy Agency has put out a high priority request [1] for measurements of the mean gamma-ray energy and multiplicity to an accuracy better than 7.5 percent from several fissioning systems; including U-235(n(thermal)). Measurements of the rays from these fissioning nuclei were performed with the SpecTrometer for Exotic Fission Fagments (STEFF).
Address [Wright, T.; Smith, A. G.; Bennett, S. A.; Ryan, J. A.; Sekhar, A.; Warren, S.; Billowes, J.; Chiaveri, E.; Sabate-Gilarte, M.] Univ Manchester, Manchester, England, Email: tobias.wright@manchester.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001190743600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6028
Permanent link to this record
 

 
Author Clement, E.; Bracco, A.; Gadea, A.; Simpson, J.
Title Organisation of the AGATA collaboration and physics campaigns Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 7 Pages 152 - 5pp
Keywords
Abstract (down) The AGATA spectrometer has a well-established organisational and management structure for its construction and operation. The roles and responsibilities of each of the management committees and their interaction, as well as the scientific organisation is described in this contribution. The organisation of the present campaign, which aims to realise the 4p spectrometer, is presented. General comments on the previous physics campaigns at LNL (2010-2011), GSI (2012-2014) and GANIL (2015-2021) are made.
Address [Clement, E.] GANIL, IN2P3, CNRS, CEA,DRF, BP 55027,Bd Henri Becquerel, F-14076 Caen, France, Email: angela.bracco@unimi.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001032187000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5603
Permanent link to this record
 

 
Author AGATA collaboration (Collado, J. et al); Civera, J.V.; Gadea, A.
Title AGATA phase 2 advancements in front-end electronics Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 6 Pages 133 - 20pp
Keywords
Abstract (down) The AGATA collaboration has a long-standing leadership in the development of front-end electronics for high resolution ?-ray spectroscopy using large volume high purity germanium detectors. For two decades, the AGATA collaboration has been developing state-of-the-art digital electronics processing with high resolution sampling ADC, high-speed signal transfer and fast readout to a high throughput computing (HTC) farm for on-line pulse shape analysis. The collaboration is presently addressing the next challenge of equipping a 4p array with more than 6000 channels in high resolution mode, generating approximately 10 MHz of total trigger requests, coupled to a large variety of complementary instruments. A next generation of front-end electronics, presently under design, is based on industrial products (System on Module FPGA's), has higher integration and lower power consumption. In this contribution, the conceptual design of the new electronics is presented. The results of the very first tests of the pre-production electronics are presented as well as future perspectives.
Address [Collado, J.; Gonzalez, V.] Univ Valencia, Dept Ingn Elect, Valencia 46100, Spain, Email: gadea@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001015065300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5567
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR Type Journal Article
Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 52 Issue 10 Pages 325 - 23pp
Keywords
Abstract (down) Simulation results for future measurements of electromagnetic proton form factors at PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel (p) over barp -> e(+)e(-) is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. (p) over barp -> pi(+)pi(-), is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
Address [Singh, B.] Aligarth Muslim Univ, Dept Phys, Aligarh, India, Email: khaneftd@kph.uni-mainz.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000391808200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2933
Permanent link to this record