toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
  Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 850 Issue 2 Pages L35 - 18pp  
  Keywords gamma-ray burst: general; gravitational waves; neutrinos  
  Abstract (up) The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.  
  Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417541800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3421  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 2 Pages 022005 - 15pp  
  Keywords  
  Abstract (up) The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 x 10(51)-2 x 10(54) erg.  
  Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405365800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3216  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 626 Issue Pages 128-143  
  Keywords AMADEUS; ANTARES; Neutrino telescope; Acoustic neutrino detection; Thermo-acoustic model  
  Abstract (up) The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around – 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.  
  Address [Anton, G.; Auer, R.; Eberl, T.; Fehr, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Kretschmer, W.; Lahmann, R.; Laschinsky, H.; Motz, H.; Neff, M.; Ostasch, R.; Richardt, C.; Schoeck, F.; Shanidze, R.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: robert.lahmann@physik.uni-erlangen.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286793800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 578  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Time calibration of the ANTARES neutrino telescope Type Journal Article
  Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 34 Issue 7 Pages 539-549  
  Keywords Time calibration; Neutrino telescopes; ANTARES  
  Abstract (up) The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of similar to 1 ns. The methods developed to attain this level of precision are described.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia 46071, Spain, Email: zornoza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287955500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 560  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 12 Pages 122007 - 7pp  
  Keywords  
  Abstract (up) The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun “shadow” effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7 sigma, with an estimated angular resolution of 0.59 degrees +/- 0.10 degrees for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: andrey.romanov@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000602850800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4663  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva