|   | 
Details
   web
Records
Author Coloma, P.; Hernandez, P.; Muñoz, V.; Shoemaker, I.M.
Title New constraints on heavy neutral leptons from Super-Kamiokande data Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 3 Pages 235 - 7pp
Keywords
Abstract (up) Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neutrino detectors. We perform a search for these long-lived particles using Super-Kamiokande multi-GeV neutrino data and derive stringent limits on the mixing with electron, muon and tau neutrinos as a function of the long-lived particle mass. We also present the limits on the branching ratio versus lifetime plane, which are helpful in determining the constraints in non-minimal models where the heavy neutral leptons have new interactions with the Standard Model.
Address [Coloma, P.; Hernandez, P.; Munoz, V.] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: pilar.coloma@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000531858300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4394
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb plus Pb collisions at 5.02 TeV with the ATLAS detector Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 829 Issue Pages 137077 - 23pp
Keywords
Abstract (up) Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 μb(-1) and 38 μb(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar < 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.
Address [Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000821533700016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5287
Permanent link to this record
 

 
Author Krupczak, R.; da Silva, T.N.; Domingues, T.S.; Luzum, M.; Denicol, G.S.; Gardim, F.G.; Giannini, A.V.; Ferreira, M.N.; Hippert, M.; Noronha, J.; Chinellato, D.D.; Takahashi, J.
Title Causality violations in simulations of large and small heavy-ion collisions Type Journal Article
Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 109 Issue 3 Pages 034908 - 12pp
Keywords
Abstract (up) Heavy-ion collisions, such as Pb-Pb or p-Pb, produce extreme conditions in temperature and density that make the hadronic matter transition to a new state, called quark-gluon plasma (QGP). Simulations of heavy-ion collisions provide a way to improve our understanding of the QGP's properties. These simulations are composed of a hybrid description that results in final observables in agreement with accelerators like LHC and RHIC. However, recent works pointed out that these hydrodynamic simulations can display acausal behavior during the evolution in certain regions, indicating a deviation from a faithful representation of the underlying QCD dynamics. To pursue a better understanding of this problem and its consequences, this work simulated two different collision systems, Pb-Pb and p-Pb at root sNN = 5.02 TeV. In this context, our results show that causality violation, even though always present, typically occurs on a small part of the system, quantified by the total energy fraction residing in the acausal region. In addition, the acausal behavior can be reduced with changes in the prehydrodynamic factors and the definition of the bulk-viscous relaxation time. Since these aspects are fairly arbitrary in current simulation models, without solid guidance from the underlying theory, it is reasonable to use the disturbing presence of acausal behavior in current simulations to guide improvements towards more realistic modeling. While this work does not solve the acausality problem, it sheds more light on this issue and also proposes a way to solve this problem in simulations of heavy-ion collisions.
Address [Krupczak, Renata; da Silva, Tiago Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: rkrupczak@physik.uni-bielefeld.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001198699800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6113
Permanent link to this record
 

 
Author de Blas, J.; Chowdhury, D.; Ciuchini, M.; Coutinho, A.M.; Eberhardt, O.; Fedele, M.; Franco, E.; di Cortona, G.G.; Miralles, V.; Mishima, S.; Paul, A.; Peñuelas, A.; Pierini, M.; Reina, L.; Silvestrini, L.; Valli, M.; Watanabe, R.; Yokozaki, N.
Title HEPfit: a code for the combination of indirect and direct constraints on high energy physics models Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 5 Pages 456 - 31pp
Keywords
Abstract (up) HEPfit is a flexible open-source tool which, given the Standard Model or any of its extensions, allows to (i) fit the model parameters to a given set of experimental observables; (ii) obtain predictions for observables. HEPfit can be used either in Monte Carlo mode, to perform a Bayesian Markov Chain Monte Carlo analysis of a given model, or as a library, to obtain predictions of observables for a given point in the parameter space of the model, allowing HEPfit to be used in any statistical framework. In the present version, around a thousand observables have been implemented in the Standard Model and in several new physics scenarios. In this paper, we describe the general structure of the code as well as models and observables implemented in the current release.
Address [de Blas, J.] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: hepfit-support@romal.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000537056900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4414
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H -> WW* -> eνμν decays in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 032005 - 41pp
Keywords
Abstract (up) Higgs boson production via gluon-gluon fusion and vector-boson fusion in proton-proton collisions is measured in the H & RARR; WW* & RARR; ev & mu;v decay channel. The Large Hadron Collider delivered proton-proton collisions at a center-of-mass energy of 13 TeV between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb-1. The total cross sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the H & RARR; WW* branching ratio are measured to be 12.0 1 1.4 and 0.75 thorn 0.19 -0.16 pb, respectively, in agreement with the Standard Model predictions of 10.4 1 0.6 and 0.81 1 0.02 pb. Higgs boson production is further characterized through measurements of Simplified Template Cross Sections in a total of 11 kinematic fiducial regions.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001063965200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5770
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Measurements of differential cross sections of Higgs boson production through gluon fusion in the H → WW *→ eνμν final state at √s=13 TeV with the ATLAS detector Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 9 Pages 774 - 40pp
Keywords
Abstract (up) Higgs boson production via gluon-gluon fusion is measured in the WW *-> e nu μnu decay channel. The dataset utilized corresponds to an integrated luminosity of 139 fb(-1) collected by the ATLAS detector from root s = 13TeV proton-proton collisions delivered by the Large Hadron Collider between 2015 and 2018. Differential cross sections are measured in a fiducial phase space restricted to the production of at most one additional jet. The results are consistent with Standard Model expectations, derived using different Monte Carlo generators.
Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001062396000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5729
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Higgs boson production cross-section measurements and their EFT interpretation in the 4l decay channel at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 10 Pages 957 - 54pp
Keywords
Abstract (up) Higgs boson properties are studied in the fourlepton decay channel (where lepton = e, mu) using 139 fb(-1) of proton-proton collision data recorded at v s =13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for H -> ZZ * decay is measured to be 1.34 +/- 0.12 pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of 1.33 +/- 0.08 pb. Crosssections times branching ratio are measured for the main Higgs boson production modes in several exclusive phasespace regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd beyond the Standard Model couplings of the Higgs boson to vector bosons, gluons and top quarks.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000586401900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4595
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J.
Title Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 181-50pp
Keywords Higgs Physics; Perturbative QCD
Abstract (up) Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000531394200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4391
Permanent link to this record
 

 
Author Feng, J.L. et al; Garcia Soto, A.; Hirsch, M.
Title The Forward Physics Facility at the High-Luminosity LHC Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 3 Pages 030501 - 410pp
Keywords Forward Physics Facility; Large Hadron Collider; new particle searches; neutrinos; QCD; astroparticle physics; dark matter
Abstract (up) High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
Address [Feng, Jonathan L.; Tsai, Yu-Dai; Bian, Jianming; Casper, David W.; Fieg, Max; Huang, Fei; Kuo, Jui-Lin; Wu, Wenjie] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: jlf@uci.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000934195400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5491
Permanent link to this record
 

 
Author Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D.
Title High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.
Volume 69 Issue 12 Pages 5429-5438
Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power
Abstract (up) High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.
Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes WOS:000725804500027 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5042
Permanent link to this record