toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime Type Journal Article
  Year 2024 Publication Universe Abbreviated Journal Universe  
  Volume 10 Issue 1 Pages 18 - 14pp  
  Keywords Hawking radiation; Unruh vacuum; Reissner-Nordstrom black holes  
  Abstract (down) The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151025300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5914  
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D. url  doi
openurl 
  Title Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 055 - 37pp  
  Keywords Baryon/Lepton Number Violation; Multi-Higgs Models  
  Abstract (down) The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.  
  Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: alessio.giarnetti@uniroma3.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255993100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6173  
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Bijnens, J.; Husek, T.; Romero-Lopez, F.; Sharpe, S.R.; Sjo, M. url  doi
openurl 
  Title The three-pion K-matrix at NLO in ChPT Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 048 - 43pp  
  Keywords Chiral Lagrangian; Hadronic Spectroscopy; Structure and Interactions; Lattice QCD  
  Abstract (down) The three-particle K-matrix, K-df,K-3, is a scheme-dependent quantity that parametrizes short-range three-particle interactions in the relativistic-field-theory three-particle finite-volume formalism. In this work, we compute its value for systems of three pions in all isospin channels through next-to-leading order in Chiral Perturbation Theory, generalizing previous work done at maximum isospin. We obtain analytic expressions through quadratic order (or cubic order, in the case of zero isospin) in the expansion about the three-pion threshold.  
  Address [Baeza-Ballesteros, Jorge] Univ Valencia, IFIC, CSIC, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178200000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6006  
Permanent link to this record
 

 
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T. url  doi
openurl 
  Title Dark matter bound-state formation in the Sun Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 045 - 32pp  
  Keywords Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics  
  Abstract (down) The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.  
  Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255993100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6172  
Permanent link to this record
 

 
Author Chen, M.C.; King, S.F.; Medina, O.; Valle, J.W.F. url  doi
openurl 
  Title Quark-lepton mass relations from modular flavor symmetry Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 160 - 28pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Theories of Flavour  
  Abstract (down) The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying on ad hoc flavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Gamma 4 approximately equal to S4 symmetry, which have calculable deviations from the usual Golden Mass Relation.  
  Address [Chen, Mu-Chun] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: muchunc@uci.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001169490600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5981  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva