toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alvarez-Ruso, L.; Hernandez, E.; Nieves, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title Watson's theorem and the N Delta(1232) axial transition Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 014016 - 16pp  
  Keywords  
  Abstract (down) We present a new determination of the N Delta axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C-5(A) (0), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.  
  Address [Alvarez-Ruso, L.; Nieves, J.] Ctr Mixto CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368324700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2521  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Rodrigo, G. url  doi
openurl 
  Title Four-dimensional unsubtraction from the loop-tree duality Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 160 - 42pp  
  Keywords NLO Computations  
  Abstract (down) We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.  
  Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Hernandez-Pinto, Roger J.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382685100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2793  
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction Type Journal Article
  Year 2016 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging  
  Volume 35 Issue 8 Pages 1952-1961  
  Keywords 3D reconstruction; camera system; geometric calibration; visible fiducials; X-ray imaging  
  Abstract (down) We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.  
  Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: kiko@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381436000016 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2781  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Unified description of seagull cancellations and infrared finiteness of gluon propagators Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 4 Pages 045002 - 22pp  
  Keywords  
  Abstract (down) We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of “seagull cancellations” among the one-and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.  
  Address [Aguilar, A. C.; Figueiredo, C. T.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380962400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2772  
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Determination of the QCD coupling from ALEPH tau decay data Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 3 Pages 034027 - 26pp  
  Keywords  
  Abstract (down) We present a comprehensive study of the determination of the strong coupling from tau decay, using the most recent release of the experimental ALEPH data. We critically review all theoretical strategies used in previous works and put forward various novel approaches which allow one to study complementary aspects of the problem. We investigate the advantages and disadvantages of the different methods, trying to uncover their potential hidden weaknesses and test the stability of the obtained results under slight variations of the assumed inputs. We perform several determinations, using different methodologies, and find a very consistent set of results. All determinations are in excellent agreement, and allow us to extract a very reliable value for alpha(s)(m(tau)(2)). The main uncertainty originates in the pure perturbative error from unknown higher orders. Taking into account the systematic differences between the results obtained with the contour-improved perturbation theory and fixed-order perturbation theory prescriptions, we find alpha((nf=3))(s) (m(tau)(2)) = 0.328 +/- 0.013 which implies alpha((nf=5))(s) (M-Z(2)) = 0.1197 +/- 0.0015.  
  Address [Pich, Antonio; Rodriguez-Sanchez, Antonio] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apartat Correus 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381413500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2795  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva