toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author SuperNEMO Collaboration (Argyriades, J. et al); Carcel, S.; Diaz, J.; Monrabal, F.; Serra, L.; Yahlali, N. url  doi
openurl 
  Title Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 1 Pages 120-128  
  Keywords Double beta decay; NEMO-3; SuperNEMO; BiPo; Majorana neutrino; Radiopurity  
  Abstract (down) The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in (TI)-T-208 and Bi-214 for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m(2) of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in (TI)-T-208. After more than one year of background measurement, a surface activity of the scintillators of A((TI)-T-208) = 1.5 μBq/m(2) is reported here. Given this level of background, a larger BiPo detector having 12 m(2) of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A((TI)-T-208) <2 μBq/kg (90% CL.) with a six month measurement.  
  Address [Argyriades, J.; Augier, C.; Bongrand, M.; Bourgeois, C.; Breton, D.; Briere, M.; Broudin-Bay, G.; Garrido, X.; Jenzer, S.; Jullian, S.; Sarazin, X.; Simard, L.; Szklarz, G.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France, Email: sarazin@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282530300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 364  
Permanent link to this record
 

 
Author Mistry, A. K. et al; Tain, J.L.; Agramunt, J.; Algora, A.; Guadilla, V.; Morales, A.I.; Nacher, E.; Orrigo, S.E.A.; Rubio, B. doi  openurl
  Title The DESPEC setup for GSI and FAIR Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1033 Issue Pages 166662 - 18pp  
  Keywords alpha, beta, gamma spectroscopy; Digital electronics; Fast timing; FAIR; DESPEC; NuSTAR  
  Abstract (down) The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000794062100014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5343  
Permanent link to this record
 

 
Author Gil, A.; Blanco, A.; Castro, E.; Diaz, J.; Garzon, J.A.; Gonzalez-Diaz, D.; Fouedjio, L.; Kolb, B.W.; Palka, M.; Traxler, M.; Trebacz, R.; Zumbruch, P. doi  openurl
  Title The slow control system of the HADES RPC wall Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 661 Issue Pages S118-S120  
  Keywords RPC; Resistive plate chambers; Slow control system; EPICS; 1-wire  
  Abstract (down) The control and monitoring system for the new HADES RPC time of flight wall installed at GSI Helmholtzzentrum fur Schwerionenforschung GmbH (Darmstadt, Germany), is described. The slow control system controls/monitors about 6000 variables from different physical devices via a distributed architecture, which uses intensively the 1-wire (R) bus. The software implementation is based on the Experimental Physics and Industrial Control System (EPICS) software tool kit providing low cost, reliability and adaptability without requiring large hardware resources. The control and monitoring system attends five different subsystems: front-end electronics, low voltage, high voltage, gases, and detector. (C) 2010 Elsevier B.V. All rights reserved.  
  Address [Gil, A.; Diaz, J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46971, Spain, Email: alejandro.gil@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311568900030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1284  
Permanent link to this record
 

 
Author Belle-II DEPFET and PXD Collaboration (Ye, H. et al); Boronat, M.; Esperante, D.; Fuster, J.; Gomis, P.; Lacasta, C.; Vos, M. doi  openurl
  Title Commissioning and performance of the Belle II pixel detector Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 987 Issue Pages 164875 - 5pp  
  Keywords Belle II; Pixel detector; DEPFET  
  Abstract (down) The Belle II experiment at the SuperKEKB energy-asymmetric e(+)e(-) collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab(-1) to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented.  
  Address [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: hua.ye@desy.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000597154800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4653  
Permanent link to this record
 

 
Author Natochii, A. et al; Marinas, C. url  doi
openurl 
  Title Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1055 Issue Pages 168550 - 21pp  
  Keywords Detector background; Lepton collider; Monte-Carlo simulation  
  Abstract (down) The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab-1 to study CP-violation in the B-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6 x 1035 cm-2 s-1by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to betay* = 0.3 mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8 x 1035 cm-2 s-1is reached for betay* = 0.6 mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.  
  Address [Natochii, A.; Browder, T. E.; Schueler, J.; Vahsen, S. E.] Univ Hawaii, Honolulu, HI 96822 USA, Email: natochii@hawaii.edu;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001056103200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5626  
Permanent link to this record
 

 
Author Belle-II DEPFET and PXD Collaborations (Wang, B. et al); Marinas, C. doi  openurl
  Title Operational experience of the Belle II pixel detector Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1032 Issue Pages 166631 - 7pp  
  Keywords Belle II PXD; DEPFET; Pixel detector; Vertex detector  
  Abstract (down) The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.  
  Address [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: wang@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000793768200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5227  
Permanent link to this record
 

 
Author Wieduwilt, P.; Paschen, B.; Schreeck, H.; Schwenker, B.; Soltau, J.; Ahlburg, P.; Dingfelder, J.; Frey, A.; Gomis, P.; Lutticke, F.; Marinas, C. url  doi
openurl 
  Title Performance of production modules of the Belle II pixel detector in a high-energy particle beam Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 991 Issue Pages 164978 - 15pp  
  Keywords DEPFET; DESY testbeam; Pixel detector; Belle II; Vertex detector  
  Abstract (down) The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.  
  Address [Paschen, B.; Ahlburg, P.; Dingfelder, J.; Luetticke, F.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany, Email: philipp.wieduwilt@phys.uni-goettingen.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686054900010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4941  
Permanent link to this record
 

 
Author BABAR Collaboration (Aubert, B. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A. url  doi
openurl 
  Title The BABAR detector: Upgrades, operation and performance Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 729 Issue Pages 615-701  
  Keywords General-purpose detector for colliding beams; Operational experience; High-luminosity storage ring operation; Ream monitoring  
  Abstract (down) The BABAR detector operated successfully at the PEP-Il asymmetric e(+) e(-) collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.  
  Address [Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Sanchez, P. del Amo; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Patrignani, C.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieuxde Phys Particules LAPP, F-74941 Annecy Le Vieux, France, Email: narnaud@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325753500086 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1621  
Permanent link to this record
 

 
Author Bolle, E.; Casella, C.; Chesi, E.; De Leo, R.; Dissertori, G.; Fanti, V.; Gillam, J.E.; Heller, M.; Joram, C.; Lustermann, W.; Nappi, E.; Oliver, J.F.; Pauss, F.; Rafecas, M.; Rudge, A.; Ruotsalainen, U.; Schinzel, D.; Schneider, T.; Seguinot, J.; Solevi, P.; Stapnes, S.; Tuna, U.; Weilhammer, P. doi  openurl
  Title AX-PET: A novel PET concept with G-APD readout Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 129-134  
  Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM  
  Abstract (down) The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like Na-22 sources. Their performance in terms of energy (Renew approximate to 11.8% (FWMH) at 511 key) and spatial resolution was assessed (sigma(axial) approximate to 0.65 mm), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans.  
  Address [Heller, M.; Joram, C.; Schneider, T.; Seguinot, J.] CERN, PH Dept, CH-1211 Geneva, Switzerland, Email: Matthieu.Heller@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311469900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1236  
Permanent link to this record
 

 
Author Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A. doi  openurl
  Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 629 Issue 1 Pages 74-79  
  Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate  
  Abstract (down) The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.  
  Address [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287556100012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 555  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva