|   | 
Details
   web
Records
Author Cepedello, R.; Hirsch, M.; Helo, J.C.
Title Loop neutrino masses from d=7 operator Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 079 - 21pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We discuss the generation of small neutrino masses from d = 71 -loop diagrams. We first systematically analyze all possible d = 7 1 -loop topologies. There is a total of 48 topologies, but only 8 of these can lead to “genuine” d = 7 neutrino masses. Here, we define genuine models to be models in which neither d = 5 nor d = 7 tree -level masses nor a d = 5 1 -loop mass appear, such that the d = 7 1 -loop is the leading order contribution to the neutrino masses. All genuine models can then be organized w.r.t. their particle content. We find there is only one diagram with no representation larger than triplet, while there are 22 diagrams with quadruplets. We briefly discuss three minimal example models of this kind.
Address [Cepedello, R.; Hirsch, M.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000405916600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3223
Permanent link to this record
 

 
Author Feruglio, F.; Gherardi, V.; Romanino, A.; Titov, A.
Title Modular invariant dynamics and fermion mass hierarchies around tau = i Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 242 - 26pp
Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Compactification and String Models
Abstract (down) We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point tau = i, where modular invariant theories possess a residual Z(4) invariance. In this region the breaking of Z(4) can be fully described by the spurion epsilon approximate to tau – i, that flips its sign under Z(4). Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the Z(4) symmetry at tau = i, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of vertical bar epsilon vertical bar. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepton sector, even in the presence of a non-minimal Kahler potential.
Address [Feruglio, Ferruccio; Titov, Arsenii] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: feruglio@pd.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000738737200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5070
Permanent link to this record
 

 
Author Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N.
Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 014 - 14pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract (down) We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.
Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 611
Permanent link to this record
 

 
Author Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.
Title PArthENoPE reloaded Type Journal Article
Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 233 Issue Pages 237-242
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract (down) We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems
Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000444667100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3729
Permanent link to this record
 

 
Author Biggio, C.; Fernandez-Martinez, E.; Filaci, M.; Hernandez-Garcia, J.; Lopez-Pavon, J.
Title Global bounds on the Type-III Seesaw Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 022 - 33pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract (down) We derive general bounds on the Type-III Seesaw parameters from a global fit to flavor and electroweak precision data. We explore and compare three Type-III Seesaw realizations: a general scenario, where an arbitrary number of heavy triplets is integrated out without any further assumption, and the more constrained cases in which only 3 or 2 (minimal scenario) additional heavy states are included. The latter assumption implies rather non-trivial correlations in the Yukawa flavor structure of the model so as to reproduce the neutrino masses and mixings as measured in neutrino oscillations experiments and thus qualitative differences can be found with the more general scenario. In particular, we find that, while the bounds on most elements of the dimension 6 operator coefficients are of order 10(-4) for the general and 3-triplet cases, the 2-triplet scenario is more strongly constrained with bounds between 10(-5) and 10(-7) for the different flavours. We also discuss how these correlations affect the present CMS constraints on the Type-III Seesaw in the minimal 2-triplet scenario.
Address [Biggio, Carla; Filaci, Manuele] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: carla.biggio@ge.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000533907600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4400
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Nebot, M.; Rebelo, M.N.
Title Two-Higgs leptonic minimal flavour violation Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 037 - 21pp
Keywords Higgs Physics; Beyond Standard Model; Neutrino Physics
Abstract (down) We construct extensions of the Standard Model with two Higgs doublets, where there are flavour changing neutral currents both in the quark and leptonic sectors, with their strength fixed by the fermion mixing matrices V(CKM) and V(PMNS). These models are an extension to the leptonic sector of the class of models previously considered by Branco, Grimus and Lavoura, for the quark sector. We consider both the cases of Dirac and Majorana neutrinos and identify the minimal discrete symmetry required in order to implement the models in a natural way.
Address [Botella, F. J.; Nebot, M.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: fbotella@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296917100037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 830
Permanent link to this record
 

 
Author Diaz, M.A.; Rojas, N.; Urrutia-Quiroga, S.; Valle, J.W.F.
Title Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 017 - 23pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract (down) We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.
Address [Aurelio Diaz, Marco; Urrutia-Quiroga, Sebastian] Pontificia Univ Catolica Chile, Inst Fis, Ave Vicuna Mackenna, Santiago 4860, Chile, Email: mad@susy.fis.puc.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000407741000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3247
Permanent link to this record
 

 
Author Aparici, A.; Herrero-Garcia, J.; Rius, N.; Santamaria, A.
Title On the nature of the fourth generation neutrino and its implications Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 030 - 31pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.
Address [Aparici, Alberto] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46071, Spain, Email: alberto.aparici@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307298400030 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1157
Permanent link to this record
 

 
Author Felkl, T.; Herrero-Garcia, J.; Schmidt, M.A.
Title The singly-charged scalar singlet as the origin of neutrino masses Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 122 - 39pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.
Address [Felkl, Tobias; Schmidt, Michael A.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: t.felkl@unsw.edu.au;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000656967200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4851
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.
Title Minimal flavor violation in the see-saw portal Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 185 - 28pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract (down) We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.
Address [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000546965800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4462
Permanent link to this record