toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aebischer, J. et al; Vicente, A. url  doi
openurl 
  Title Computing tools for effective field theories Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 2 Pages 170 - 59pp  
  Keywords  
  Abstract (up) In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.  
  Address [Aebischer, Jason; Allwicher, Lukas; Stoffer, Peter] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: matteo.fael@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001189739500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6052  
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S. url  doi
openurl 
  Title Dynamical measurements of deviations from Newton's 1/r(2) law Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 2 Pages 154 - 30pp  
  Keywords  
  Abstract (up) In Ref. Donini and Marimon (Eur Phys J C 76:696, arXiv:1609.05654, 2016), an experimental setup aiming at the measurement of deviations from the Newtonian 1/r(2) distance dependence of gravitational interactions was proposed. The theoretical idea behind this setup was to study the trajectories of a “Satellite” with a mass m(S) similar to O(10(-9)) g around a “Planet” with mass m(P) is an element of [10(-7), 10(-5)] g, looking for precession of the orbit. The observation of such feature induced by gravitational interactions would be an unambiguous indication of a gravitational potential with terms different from 1/r and, thus, a powerful tool to detect deviations from Newton's 1/r(2) law. In this paper we optimize the proposed setup in order to achieve maximal sensitivity to look for such Beyond-Newtonian corrections. We then study in detail possible background sources that could induce precession and quantify their impact on the achievable sensitivity. We finally conclude that a dynamical measurement of deviations from newtonianity can test Yukawa-like corrections to the 1/r potential with strength as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm.  
  Address [Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S.] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000757843300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5147  
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 Type Journal Article
  Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 228 Issue 4 Pages 755-1107  
  Keywords  
  Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.  
  Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: Michael.Benedikt@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477858500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4082  
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title HE-LHC: The High-Energy Large Hadron Collider Future Circular Collider Conceptual Design Report Volume 4 Type Journal Article
  Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 228 Issue 5 Pages 1109-1382  
  Keywords  
  Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.  
  Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: frank.zimmermann@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000476546300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4089  
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 Type Journal Article
  Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 228 Issue 2 Pages 261-623  
  Keywords  
  Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today's technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.  
  Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: michael.benedikt@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470784400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4058  
Permanent link to this record
 

 
Author Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S. url  doi
openurl 
  Title Localization of abelian gauge fields with Stueckelberg-like geometrical coupling on f(T, B)-thick brane Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 388 - 14pp  
  Keywords  
  Abstract (up) In the context of f (T, B) modified teleparallel gravity, we investigate the influence of torsion scalar T and boundary term B on the confinement of both the gauge vector and Kalb-Ramond fields. Both fields require a suitable coupling in five-dimensional braneworld scenarios to yield a normalizable zero mode. We propose a Stueckelberg-like geometrical coupling that non-minimally couples the fields to the torsion scalar and boundary term. To set up our braneworld models, we use the first-order formalism in which two kinds of superpotential are taken: sine-Gordon and f(4)-deformed. The geometrical coupling is used to produce a localized zero mode. Moreover, we analyze the massive spectrum for both fields and obtain possible resonant massive modes. Furthermore, we do not find tachyonic modes leading to a consistent thick brane.  
  Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5547  
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Montani, G.; Rinaldi, M. url  doi
openurl 
  Title Superentropic black hole with Immirzi hair Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 8 Pages 084034 - 14pp  
  Keywords  
  Abstract (up) In the context of f(R) generalizations to the Hoist action, endowed with a dynamical Immirzi field, we derive an analytic solution describing asymptotically anti-de Sitter black holes with hyperbolic horizon. These exhibit a scalar hair of the second kind, which ultimately depends on the Immirzi field radial behavior. In particular, we show how the Immirzi field modifies the usual entropy law associated to the black hole. We also verify that the Immirzi field boils down to a constant value in the asymptotic region, thus restoring the standard loop quantum gravity picture. We finally prove the violation of the reverse isoperimetric inequality, resulting in the superentropic nature of the black hole, and we discuss in detail the thermodynamic stability of the solution.  
  Address [Boudet, Simon; Rinaldi, Massimiliano] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000649081100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4833  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title The role of right-handed neutrinos in b -> c tau (pi nu(tau), rho nu(tau), mu(nu)over-bar(mu)nu(tau))(nu)over-bar(tau) from visible final-state kinematics Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 122 - 45pp  
  Keywords Beyond Standard Model; CP violation  
  Abstract (up) In the context of lepton flavor universality violation (LFUV) studies, we fully derive a general tensor formalism to investigate the role that left- and right-handed neutrino new-physics (NP) terms may have in b -> c tau(nu) over bar (tau) transitions. We present, for several extensions of the Standard Model (SM), numerical results for the Lambda(b) -> Lambda(c)tau(nu) over bar (tau) semileptonic decay, which is expected to be measured with precision at the LHCb. This reaction can be a new source of experimental information that can help to confirm, or maybe rule out, LFUV presently seen in (B) over bar meson decays. The present study analyzes observables that can help in distinguishing between different NP scenarios that otherwise provide very similar results for the branching ratios, which are our currently best hints for LFUV. Since the tau lepton is very short-lived, we consider three subsequent tau-decay modes, two hadronic pi nu(tau) and rho nu(tau) and one leptonic mu(nu) over bar (mu)nu(tau), which have been previously studied for (B) over bar -> D(*) decays. Within the tensor formalism that we have developed in previous works, we re-obtain the expressions for the differential decay width written in terms of visible (experimentally accessible) variables of the massive particle created in the tau decay. There are seven different tau angular and spin asymmetries that are defined in this way and that can be extracted from experiment. Those asymmetries provide observables that can help in constraining possible SM extensions.  
  Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: neus.penalva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000708483600004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5005  
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Moretti, F.; Olmo, G.J. url  doi
openurl 
  Title Torsional birefringence in metric-affine Chern-Simons gravity: gravitational waves in late-time cosmology Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 026 - 28pp  
  Keywords Gravitational waves in GR and beyond: theory; modified gravity; Cosmological perturbation theory in GR and beyond; Exact solutions; black holes and black hole thermodynamics in GR and beyond  
  Abstract (up) In the context of the metric-affine Chern-Simons gravity endowed with projective invariance, we derive analytical solutions for torsion and nonmetricity in the homogeneous and isotropic cosmological case, described by a flat Friedmann-Robertson-Walker metric. We discuss in some details the general properties of the cosmological solutions in the presence of a perfect fluid, such as the dynamical stability and the emergence of big bounce points, and we examine the structure of some specific solutions reproducing de Sitter and power law behaviours for the scale factor. Then, we focus on first-order perturbations in the de Sitter scenario, and we study the propagation of gravitational waves in the adiabatic limit, looking at tensor and scalar polarizations. In particular, we find that metric tensor modes couple to torsion tensor components, leading to the appearance, as in the metric version of Chern-Simons gravity, of birefringence, characterized by different dispersion relations for the left and right circularized polarization states. As a result, the purely tensor part of torsion propagates like a wave, while nonmetricity decouples and behaves like a harmonic oscillator. Finally, we discuss scalar modes, outlining as they decay exponentially in time and do not propagate.  
  Address [Boudet, S.] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001090397800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5791  
Permanent link to this record
 

 
Author Capozzi, F.; Chakraborty, M.; Chakraborty, S.; Sen, M. url  doi
openurl 
  Title Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 8 Pages 083011 - 9pp  
  Keywords  
  Abstract (up) In the dense supernova environment, neutrinos can undergo fast flavor conversions which depend on the large neutrino-neutrino interaction strength. It has been recently shown that both their presence and outcome can be affected when passing from the commonly used three neutrino species approach to the more general one with six species. Here, we build up on a previous work performed on this topic and perform a numerical simulation of flavor evolution in both space and time, assuming six neutrino species. We find that the results presented in our previous work remain qualitatively the same even for flavor evolution in space and time. This emphasizes the need for going beyond the simplistic approximation with three species when studying fast flavor conversions.  
  Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, CSIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000875132200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5396  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva