toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rodriguez-Alvarez, M.J.; Sanchez, F.; Soriano, A.; Iborra, A. doi  openurl
  Title Sparse Givens resolution of large system of linear equations: Applications to image reconstruction Type Journal Article
  Year 2010 Publication Mathematical and Computer Modelling Abbreviated Journal Math. Comput. Model.  
  Volume 52 Issue 7-8 Pages 1258-1264  
  Keywords Givens rotations; QR-factorization; Computed tomography; Image reconstruction  
  Abstract (up) In medicine, computed tomographic images are reconstructed from a large number of measurements of X-ray transmission through the patient (projection data). The mathematical model used to describe a computed tomography device is a large system of linear equations of the form AX = B. In this paper we propose the QR decomposition as a direct method to solve the linear system. QR decomposition can be a large computational procedure. However, once it has been calculated for a specific system, matrices Q and R are stored and used for any acquired projection on that system. Implementation of the QR decomposition in order to take more advantage of the sparsity of the system matrix is discussed.  
  Address [Rodriguez-Alvarez, Maria-Jose; Iborra, Amadeo] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46022 Valencia, Spain, Email: mjrodri@imm.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-7177 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280933700043 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 395  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Bazzocchi, F.; de Medeiros Varzielas, I.; Merlo, L.; Morisi, S. url  doi
openurl 
  Title Tri/Bi-maximal lepton mixing and leptogenesis Type Journal Article
  Year 2010 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 827 Issue 1-2 Pages 34-58  
  Keywords  
  Abstract (up) In models with flavour symmetries added to the gauge group of the Standard Model the CP-violating asymmetry necessary for leptogenesis may be related with low-energy parameters. A particular case of interest is when the flavour symmetry produces exact Tri/Bi-maximal lepton mixing leading to a vanishing CP-violating asymmetry. In this paper we present a model-independent discussion that confirms this always occurs for unflavoured leptogenesis in type I see-saw scenarios, noting however that Tri/Bi-maximal mixing does not imply a vanishing asymmetry in general scenarios where there is interplay between type I and other see-saws. We also consider a specific model where the exact Tri/Bi-maximal mixing is lifted by corrections that can be parametrised by a small number of degrees of freedom and analyse in detail the existing link between low and high-energy parameters – focusing on how the deviations from Tri/Bi-maximal are connected to the parameters governing leptogenesis.  
  Address [Merlo, L.] Univ Padua, Dipartimento Fis G Galilei, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy, Email: daristi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272669900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 512  
Permanent link to this record
 

 
Author Bouhova-Thacker, E.; Kostyukhin, V.; Koffas, T.; Liebig, W.; Limper, M.; Piacquadio, G.N.; Prokofiev, K.; Weiser, C.; Wildauer, A. doi  openurl
  Title Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC Type Journal Article
  Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 57 Issue 2 Pages 760-767  
  Keywords Data analysis; data reconstruction; high energy physics; pattern recognition; reconstruction algorithms; tracking; vertex detectors  
  Abstract (up) In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.  
  Address [Bouhova-Thacker, Eva] Univ Lancaster, Lancaster LA1 4YB, England, Email: bouhova@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276679200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 260  
Permanent link to this record
 

 
Author Antonelli, M. et al; Martinez-Vidal, F.; Pich, A. url  doi
openurl 
  Title Flavor physics in the quark sector Type Journal Article
  Year 2010 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 494 Issue 3-4 Pages 197-414  
  Keywords  
  Abstract (up) In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved; apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K, D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments; thus a review of the status of quark flavor physics is timely. This report is the result of the work of physicists attending the 5th CKM workshop, hosted by the University of Rome “La Sapienza”, September 9-13, 2008. It summarizes the results of the current generation of experiments that are about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.  
  Address [Cabibbo, N.; Cavoto, G.; Faccini, R.; Ferroni, F.; Franco, E.; Giagu, S.; Martinelli, G.; Rescigno, M.; Silvestrini, L.; Virto, J.] INFN Sez Roma, I-00185 Rome, Italy, Email: rfaccini@slac.stanford.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282194400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 374  
Permanent link to this record
 

 
Author Molina, R.; Branz, T.; Oset, E. url  doi
openurl 
  Title New interpretation for the D*(s2)(2573) and the prediction of novel exotic charmed mesons Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 1 Pages 014010 - 17pp  
  Keywords  
  Abstract (up) In this manuscript we study the vector-vector interaction within the hidden-gauge formalism in a coupled channel unitary approach. In the sector C = 1, S = 1, J = 2 we get a pole in the T matrix around 2572 MeV that we identify with the D*(s2)(2573), coupling strongly to the D*K*(D-s(*)phi(omega)) channels. In addition we obtain resonances in other exotic sectors which have not been studied before such as C = 1, S = -1, C = 2, S = 0 and C = 2, S = 1. These "flavor-exotic'' states are interpreted as D*(K) over bar*, D*D*, and (DsD)-D-** molecular states but have not been observed yet. In total we obtain nine states with different spin, isospin, charm, and strangeness of non-C = 0, S = 0 and C = 1, S = 0 character, which have been reported before.  
  Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280175300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 406  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva