toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parashar, S.; Karan, A.; Avnish; Bandyopadhyay, P.; Ghosh, K. url  doi
openurl 
  Title Phenomenology of scalar leptoquarks at the LHC in explaining the radiative neutrino masses, muon g-2, and lepton flavor violating observables Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 095040 - 34pp  
  Keywords  
  Abstract (down) We study the phenomenology of a particular leptoquark extension of the Standard Model (SM), namely the doublet-singlet scalar leptoquark extension of the SM (DSL-SM). Besides generating Majorana mass for neutrinos, these leptoquarks contribute to muon and electron (g – 2) and various lepton flavor violating processes. Collider signatures of the benchmark points (BPs), consistent with the neutrino oscillation data, anomalous muon/electron magnetic moments, experimental bounds on the charged lepton flavor violation observables, etc., are studied at the LHC/FCC with center-of-mass energies of 14, 27 and 100 TeV. While the two -1=3 charged colored scalars from the singlet and the doublet leptoquark mix with each other, the charge 2=3 colored scalar from the doublet leptoquark remains pure. With a near-degenerate mass spectrum, the pure and mixed leptoquark states are shown to be distinguishable from multiple final states, while discerning between the two mixed states remains very challenging.  
  Address [Parashar, Snehashis; Bandyopadhyay, Priyotosh] Indian Inst Technol Hyderabad, Sangareddy 502284, Telangana, India, Email: ph20resch11006@iith.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000956618800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5506  
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Particle Creation and the Schwinger Model Type Journal Article
  Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 11 Pages 2435 - 9pp  
  Keywords Schwinger model; semiclassical theory; particle creation  
  Abstract (down) We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.  
  Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000895122100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5432  
Permanent link to this record
 

 
Author Figueroa, D.G.; Lizarraga, J.; Urio, A.; Urrestilla, J. url  doi
openurl 
  Title Strong Backreaction Regime in Axion Inflation Type Journal Article
  Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 131 Issue 15 Pages 151003 - 7pp  
  Keywords  
  Abstract (down) We study the nonlinear dynamics of axion inflation, capturing for the first time the inhomogeneity and full dynamical range during strong backreaction, till the end of inflation. Accounting for inhomogeneous effects leads to a number of new relevant results, compared to spatially homogeneous studies: (i) the number of extra efoldings beyond slow-roll inflation increases very rapidly with the coupling, (ii) oscillations of the inflaton velocity are attenuated, (iii) the tachyonic gauge field helicity spectrum is smoothed out (i.e., the spectral oscillatory features disappear), broadened, and shifted to smaller scales, and (iv) the nontachyonic helicity is excited, reducing the chiral asymmetry, now scale dependent. Our results are expected to impact strongly on the phenomenology and observability of axion inflation, including gravitational wave generation and primordial black hole production.  
  Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001093422100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5783  
Permanent link to this record
 

 
Author del Rio, A.; Agullo, I. url  doi
openurl 
  Title Chiral fermion anomaly as a memory effect Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 10 Pages 105025 - 22pp  
  Keywords  
  Abstract (down) We study the nonconservation of the chiral charge of Dirac fields between past and future null infinity due to the Adler-Bell-Jackiw chiral anomaly. In previous investigations [A. del Rio, Phys. Rev. D 104, 065012 (2021)], we found that this charge fails to be conserved if electromagnetic sources in the bulk emit circularly polarized radiation. In this article, we unravel yet another contribution coming from the nonzero, infrared “soft” charges of the external, electromagnetic field. This new contribution can be interpreted as another manifestation of the ordinary memory effect produced by transitions between different infrared sectors of Maxwell theory, but now on test quantum fields rather than on test classical particles. In other words, a flux of electromagnetic waves can leave a memory on quantum fermion states in the form of a permanent, net helicity. We elaborate this idea in both 1 + 1 and 3 + 1 dimensions. We also show that, in sharp contrast, gravitational infrared charges do not contribute to the fermion chiral anomaly.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121689000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5864  
Permanent link to this record
 

 
Author Du, M.L.; Guo, Z.H.; Oller, J.A. url  doi
openurl 
  Title Insights into the nature of the P-cs(4459) Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 11 Pages 114034 - 14pp  
  Keywords  
  Abstract (down) We study the nature of the recently observed Pcs(4459) by the LHCb collaboration by employing three methods based on the elastic effective-range expansion and the resulting size of the effective-range, the saturation of the compositeness relation and width of the resonance, and a direct fit to data involving the channels J/psi Lambda, Xi ' c over line D, and Xi c over line D*. We have also considered the addition of a Castillejo-Dalitz-Dyson (CDD) pole but this scenario can be discarded. Our different analyses clearly indicate the molecular nature of the Pcs(4459) with a clear Xi c over line D* dominant component. In relation with heavy-quark-spin symmetry our results also favor the actual existence of two resonances with J=1/2 (the lighter one) and 3/2 (the heavier one) in the energy region of the Pcs(4459). In the scenario of two-resonance for the Pcs(4459), the inclusion of the Xi ' c over line D channel is required for their mass splitting and it allows one to determine the spin structures of the two resonances.  
  Address [Du, Meng-Lin] UV, CSIC, Inst Invest Paterna, Inst Fis Corpuscular,Ctr Mixto, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000754325600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva