|   | 
Details
   web
Records
Author Ortega, P.G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J.E.; Lacasta, C.; Llosa, G.; Oliver, J.F.; Sala, P.R.; Solevi, P.; Rafecas, M.
Title Noise evaluation of Compton camera imaging for proton therapy Type Journal Article
Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 60 Issue 5 Pages 1845-1863
Keywords proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM
Abstract (up) Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.
Address [Ortega, P. G.; Cerutti, F.; Ferrari, A.] CERN European Org Nucl Res, CH-1217 Meyrin, Switzerland, Email: pgarciao@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000349530700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2115
Permanent link to this record
 

 
Author Llosa, G.
Title SiPM-based Compton cameras Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 926 Issue Pages 148-152
Keywords Compton camera; Silicon photomultiplier (SiPM)
Abstract (up) Compton cameras have been developed for almost fifty years in various fields (astronomy, medical imaging, safety and industrial inspections, etc.), employing different types of detectors. Their potential use has gained renewed interest with the emergence of high light yield scintillator crystals and silicon photomultipliers (SiPMs). This combination provides good performance and operation simplicity at an affordable cost, raising again the interest in this type of systems. SiPM-based Compton cameras are being assessed for diverse applications with promising results.
Address [Llosa, G.] UVEG, CSIC, Inst Fis Corpuscular IFIC, C Catedrat Beltran 2, E-46980 Valencia, Spain, Email: llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000461775500011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3951
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Etxebeste, A.; Ortega, P.G.; Lacasta, C.; Oliver, J.F.; Solaz, C.; Llosa, G.
Title Performance evaluation of MACACO: a multilayer Compton camera Type Journal Article
Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 62 Issue 18 Pages 7321-7341
Keywords Compton imaging; Compton camera; continuous LaBr3 crystal; silicon photomultiplier; hadron therapy
Abstract (up) Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a Na-22 and an Y-88 radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a Na-22 source at a distance of 5 cm.
Address [Munoz, Enrique; Barrio, John; Etxebeste, Ane; Ortega, Pablo G.; Lacasta, Carlos; Oliver, Josep F.; Solaz, Carles; Llosa, Gabriela] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000408229900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3253
Permanent link to this record
 

 
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title The NEXT White (NEW) detector Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P12010 - 38pp
Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers
Abstract (up) Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.
Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000452463500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3833
Permanent link to this record
 

 
Author Panes, B.; Eckner, C.; Hendriks, L.; Caron, S.; Dijkstra, K.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G.
Title Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challenge Type Journal Article
Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 656 Issue Pages A62 - 18pp
Keywords catalogs; gamma rays: general; astroparticle physics; methods: numerical; methods: data analysis; techniques: image processing
Abstract (up) Context. At GeV energies, the sky is dominated by the interstellar emission from the Galaxy. With limited statistics and spatial resolution, accurately separating point sources is therefore challenging. Aims. Here we present the first application of deep learning based algorithms to automatically detect and classify point sources from gamma-ray data. For concreteness we refer to this approach as AutoSourceID. Methods. To detect point sources, we utilized U-shaped convolutional networks for image segmentation and k-means for source clustering and localization. We also explored the Centroid-Net algorithm, which is designed to find and count objects. Using two algorithms allows for a cross check of the results, while a combination of their results can be used to improve performance. The training data are based on 9.5 years of exposure from The Fermi Large Area Telescope (Fermi-LAT) and we used source properties of active galactic nuclei (AGNs) and pulsars (PSRs) from the fourth Fermi-LAT source catalog in addition to several models of background interstellar emission. The results of the localization algorithm are fed into a classification neural network that is trained to separate the three general source classes (AGNs, PSRs, and FAKE sources). Results. We compared our localization algorithms qualitatively with traditional methods and find them to have similar detection thresholds. We also demonstrate the robustness of our source localization algorithms to modifications in the interstellar emission models, which presents a clear advantage over traditional methods. The classification network is able to discriminate between the three classes with typical accuracy of similar to 70%, as long as balanced data sets are used in classification training. We published online our training data sets and analysis scripts and invite the community to join the data challenge aimed to improve the localization and classification of gamma-ray point sources.
Address [Panes, Boris] Pontificia Univ Catolica Chile, Ave Vicuna Mackenna 4860, Macul, Region Metropol, Chile, Email: bapanes@gmail.com
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000725877600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5053
Permanent link to this record