toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G. url  doi
openurl 
  Title Hairy black-holes in shift-symmetric theories Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 045 - 24pp  
  Keywords Black Holes; Classical Theories of Gravity  
  Abstract (down) Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.  
  Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562728200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4515  
Permanent link to this record
 

 
Author Galli, P.; Ortin, T.; Perz, J.; Shahbazi, C.S. doi  openurl
  Title From supersymmetric to non-supersymmetric black holes Type Journal Article
  Year 2012 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.  
  Volume 60 Issue 9-10 Pages 1026-1029  
  Keywords Black holes; supergravity  
  Abstract (down) Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].  
  Address [Ortin, Tomas; Perz, Jan; Shahbazi, C. S.] Inst Fis Teor UAM CSIC, Madrid 28049, Spain, Email: Pietro.Galli@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-8208 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308301500012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1151  
Permanent link to this record
 

 
Author Borja, E.F.; Garay, I.; Vidotto, F. url  doi
openurl 
  Title Learning about Quantum Gravity with a Couple of Nodes Type Journal Article
  Year 2012 Publication Symmetry Integrability and Geometry-Methods and Applications Abbreviated Journal Symmetry Integr. Geom.  
  Volume 8 Issue Pages 015 - 44pp  
  Keywords discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology  
  Abstract (down) Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.  
  Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: efborja@theorie3.physik.uni-erlangen.de;  
  Corporate Author Thesis  
  Publisher Natl Acad Sci Ukraine, Inst Math Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1815-0659 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303831400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1018  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Some recent results on Ricci-based gravity theories Type Journal Article
  Year 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 31 Issue Pages 2240012 - 15pp  
  Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects  
  Abstract (down) In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000848888900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5350  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Ringeval, C. url  doi
openurl 
  Title Cascading dust inflation in Born-lnfeld gravity Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 046 - 30pp  
  Keywords modified gravity; inflation  
  Abstract (down) In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.  
  Address [Jimenez, Jose Beltran] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France, Email: jose.beltran@cpt.univ-mrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365821200047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva