toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author SciBooNE Collaboration (Cheng, G. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title Measurement of K(+) production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 1 Pages 012009 - 22pp  
  Keywords  
  Abstract (down) The SciBooNE Collaboration reports K(+) production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C(8)H(8)) target in the SciBooNE detector. The K(+) mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d(2)sigma/dpd Omega = (5.34 +/- 0.76) mb/(GeV/c x sr) for p + Be -> K(+) + X at mean K(+) energy of 3.9 GeVand angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K(+) sample. Compared to Monte Carlo predictions using previous higher energy K(+) production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 +/- 0.12. This agreement is evidence that the extrapolation of the higher energy K(+) measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K(+) production cross section from 40% to 14%.  
  Address [Cheng, G; Mariani, C; Djurcic, Z; Franke, AJ; Mahn, KBM; Shaevitz, MH] Columbia Univ, Dept Phys, New York, NY 10027 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293248600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 709  
Permanent link to this record
 

 
Author SciBooNE Collaboration (Kurimoto, Y. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 033004 - 18pp  
  Keywords  
  Abstract (down) The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) X 10(-2).  
  Address [Kurimoto, Y.; Hiraide, K.; Kubo, H.; Matsuoka, K.; Nakajima, Y.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 492  
Permanent link to this record
 

 
Author SciBooNE Collaboration (Kurimoto, Y. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 11 Pages 111102 - 6pp  
  Keywords  
  Abstract (down) The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement.  
  Address [Kurimoto, Y.; Tanaka, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278849300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 423  
Permanent link to this record
 

 
Author SciBooNE and MiniBooNE collaborations (Mahn, K.B.M. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title Dual baseline search for muon neutrino disappearance at 0.5 eV(2) < Delta m(2) < 40 eV(2) Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 3 Pages 032007 - 10pp  
  Keywords  
  Abstract (down) The SciBooNE and MiniBooNE collaborations report the results of a nu(mu) disappearance search in the Delta m(2) region of 0.5-40 eV(2). The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on nu(mu) disappearance in the 0.5-40 eV(2) Delta m(2) region, with an improvement over previous experimental constraints between 10 and 30 eV(2).  
  Address [Dharmapalan, R.; Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300663800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 913  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 4 Pages P04034 - 35pp  
  Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)  
  Abstract (down) The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986658100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5551  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 12 Pages P12004 - 100pp  
  Keywords Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)  
  Abstract (down) The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.  
  Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595944800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4643  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 1 Pages P01005 - 111pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)  
  Abstract (down) The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000757487100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5131  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Volume IV The DUNE far detector single-phase technology Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 8 Pages T08010 - 619pp  
  Keywords  
  Abstract (down) The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE.  
  Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635160500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4785  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Volume III DUNE far detector technical coordination Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 8 Pages T08009 - 193pp  
  Keywords  
  Abstract (down) The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.  
  Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635160500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4786  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 7 Pages 618 - 25pp  
  Keywords  
  Abstract (down) The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001061746600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5721  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva