|   | 
Details
   web
Records
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 26pp
Keywords modified gravity; alternatives to inflation; gravity
Abstract (up) We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000346105300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2039
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J.
Title Quantum dress for a naked singularity Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 760 Issue Pages 244-248
Keywords Semiclassical gravity; Quantum backreaction; Cosmic censorship; Black holes; Naked singularities; BTZ
Abstract (up) We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.
Address [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000382890500037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2804
Permanent link to this record
 

 
Author Galli, P.; Goldstein, K.; Perz, J.
Title On anharmonic stabilisation equations for black holes Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 036 - 7pp
Keywords Black Holes in String Theory; Supergravity Models
Abstract (up) We investigate the stabilisation equations for sufficiently general, yet regular, extremal (supersymmetric and non-supersymmetric) and non-extremal black holes in four-dimensional N = 2 supergravity using both the H-FGK approach and a generalisation of Denef's formalism. By an explicit calculation we demonstrate that the equations necessarily contain an anharmonic part, even in the static, spherically symmetric and asymptotically flat case.
Address Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000317521200036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1417
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Semiclassical geons at particle accelerators Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 010 - 25pp
Keywords modified gravity; Wormholes; quantum black holes
Abstract (up) We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.
Address [Omla, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000332711400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1733
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A.
Title A class of charged black hole solutions in massive (bi)gravity Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 016 - 10pp
Keywords Classical Theories of Gravity; Black Holes
Abstract (up) We present a new class of solutions describing charged black holes in massive (bi)gravity. For a generic choice of the parameters of the massive gravity action, the solution is the Reissner-Nordstrom-de Sitter metric written in the Eddington-Finkelstein coordinates for both metrics. We also study a special case of the parameters, for which the space of solutions contains an extra symmetry.
Address [Babichev, Eugeny] Univ Paris 11, CNRS, LPT, UMR 8627, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000339110500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1847
Permanent link to this record
 

 
Author Olmo, G.J.
Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 20 Issue 4 Pages 413-462
Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests
Abstract (up) We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000290228200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 961
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G.
Title Conformal metric-affine gravities Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 057 - 21pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract (up) We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000878259300018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5405
Permanent link to this record
 

 
Author Olmo, G.J.
Title Palatini actions and quantum gravity phenomenology Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 018 - 15pp
Keywords quantum gravity phenomenology; cosmic singularity
Abstract (up) We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
Address [Olmo, GJ] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000296767600018 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 816
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 740 Issue Pages 73-79
Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology
Abstract (up) We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000347046200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2099
Permanent link to this record
 

 
Author Galli, P.; Meessen, P.; Ortin, T.
Title The Freudenthal gauge symmetry of the black holes of N=2, d=4 supergravity Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 011 - 15pp
Keywords Black Holes; String Duality; Gauge Symmetry; Supergravity Models
Abstract (up) We show that the representation of black-hole solutions in terms of the variables H-M which are harmonic functions in the supersymmetric case is non-unique due to the existence of a local symmetry in the effective action. This symmetry is a continuous (and local) generalization of the discrete Freudenthal transformations initially introduced for the black-hole charges and can be used to rewrite the physical fields of a solution in terms of entirely different-looking functions.
Address [Galli, Pietro] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1555
Permanent link to this record