toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 018 - 13pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory  
  Abstract (up) Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.  
  Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1672  
Permanent link to this record
 

 
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S. url  doi
openurl 
  Title Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 035 - 18pp  
  Keywords big bang nucleosynthesis; neutrino properties; cosmological neutrinos; physics of the early universe  
  Abstract (up) The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.  
  Address [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy, Email: mangano@na.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291258300035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 642  
Permanent link to this record
 

 
Author Barenboim, G. doi  openurl
  Title Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos Type Journal Article
  Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 10 Issue Pages 813753 - 7pp  
  Keywords CPT symmetry; neutrino properties; lorentz violation; fundamental symmetries; discrete symmetries  
  Abstract (up) The CPT symmetry, which combines Charge Conjugation, Parity, and Time Reversal, is a cornerstone of our model-building method, and its probable violation will endanger the most extended tool we presently utilize to explain physics, namely local relativistic quantum fields. However, the kaon system's conservation constraints appear to be rather severe. We will show in this paper that neutrino oscillation experiments can enhance this limit by many orders of magnitude, making them an excellent instrument for investigating the basis of our understanding of Nature. As a result, verifying CPT invariance does not evaluate a specific model, but rather the entire paradigm. Therefore, as the CPT's status in the neutrino sector, linked or not to Lorentz invariance violation, will be assessed at an unprecedented level by current and future long baseline experiments, distinguishing it from comparable experimental fingerprints coming from non-standard interactions is critical. Whether the entire paradigm or simply the conventional model of neutrinos is at jeopardy is significantly dependent on this.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, Burjassot, Spain, Email: gabriela.barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804003600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5237  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Papoulias, D.K. url  doi
openurl 
  Title Consequences of the Dresden-II reactor data for the weak mixing angle and new physics Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 076 - 22pp  
  Keywords Electroweak Precision Physics; Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract (up) The Dresden-II reactor experiment has recently reported a suggestive evidence for the observation of coherent elastic neutrino-nucleus scattering, using a germanium detector. Given the low recoil energy threshold, these data are particularly interesting for a low-energy determination of the weak mixing angle and for the study of new physics leading to spectral distortions at low momentum transfer. Using two hypotheses for the quenching factor, we study the impact of the data on: (i) The weak mixing angle at a renormalization scale of similar to 10 MeV, (ii) neutrino generalized interactions with light mediators, (iii) the sterile neutrino dipole portal. The results for the weak mixing angle show a strong dependence on the quenching factor choice. Although still with large uncertainties, the Dresden-II data provide for the first time a determination of sin(2)theta(W) at such scale using coherent elastic neutrino-nucleus scattering data. Tight upper limits are placed on the light vector, scalar and tensor mediator scenarios. Kinematic constraints implied by the reactor anti-neutrino flux and the ionization energy threshold allow the sterile neutrino dipole portal to produce up-scattering events with sterile neutrino masses up to similar to 8 MeV. In this context, we find that limits are also sensitive to the quenching factor choice, but in both cases competitive with those derived from XENON1T data and more stringent that those derived with COHERENT data, in the same sterile neutrino mass range.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulgac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000853339300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5360  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J. url  doi
openurl 
  Title Effective portals to heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 001 - 45pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract (up) The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.  
  Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067715500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5697  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva