toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goasduff, A. et al; Gadea, A. doi  openurl
  Title The GALILEO gamma-ray array at the Legnaro National Laboratories Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1015 Issue Pages 165753 - 15pp  
  Keywords High-resolution gamma-ray spectroscopy; HPGe; Silicon; Neutron; Electronics; DAQ  
  Abstract (up) GALILEO, a new 4 pi high-resolution gamma-detection array, based on HPGe detectors, has been developed and installed at the Legnaro National Laboratories. The GALILEO array greatly benefits from a fully-digital readout chain, customized DAQ, and a variety of complementary detectors to improve the resolving power by the detection of particles, ions or high-energy gamma-ray transitions. In this work, a full description of the array, including electronics and DAQ, is presented together with its complementary instrumentation.  
  Address [Goasduff, A.; Valiente-Dobon, J. J.; Barrientos, D.; Biasotto, M.; Brugnara, D.; Cocconi, P.; Cortes, M. L.; de Angelis, G.; Egea, F. J.; Fantinel, S.; Gambalonga, A.; Gottardo, A.; Gozzelino, A.; Gregor, E. T.; Gulmini, M.; Hadynska-Klek, K.; Illana, A.; Jaworski, G.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Rosso, D.; Siciliano, M.; Toniolo, N.; Volpe, V.; Zanon, I] INFN Lab Nazl Legnaro, Legnaro, Italy, Email: alain.goasduff@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000717077900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5025  
Permanent link to this record
 

 
Author Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J. url  doi
openurl 
  Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 6 Pages 3134-3139  
  Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors  
  Abstract (up) In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.  
  Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372013500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2612  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F. doi  openurl
  Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 10 Pages 2364-2372  
  Keywords Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument  
  Abstract (up) Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.  
  Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098078200010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5795  
Permanent link to this record
 

 
Author Real, D.; Calvo, D. doi  openurl
  Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 7 Pages 326 - 14pp  
  Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition  
  Abstract (up) Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.  
  Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038900800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5593  
Permanent link to this record
 

 
Author Herrero, V.; Toledo, J.; Catala, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzo, J.M.; Sanchis, F.; Verdugo, A. doi  openurl
  Title Readout electronics for the SiPM tracking plane in the NEXT-1 prototype Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 229-232  
  Keywords Neutrino less double beta decay; Xenon gas TPC; SiPM readout; Front-end electronics; Gated integrator  
  Abstract (up) NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.  
  Address [Herrero, V.; Toledo, J.; Catala, J. M.; Esteve, R.; Monzo, J. M.; Sanchis, F.] Univ Politecn Valencia, CIEMAT, Ctr Mixto, I3M, Valencia 46022, Spain, Email: jtoledo@eln.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311469900049 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva