toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gelmini, G.B.; Takhistov, V.; Witte, S.J. url  doi
openurl 
  Title Geoneutrinos in large direct detection experiments Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 9 Pages 093009 - 11pp  
  Keywords  
  Abstract (up) Geoneutrinos can provide a unique insight into Earth's interior, its central engine, and its formation history. We study the detection of geoneutrinos in large direct detection experiments, which has been considered nonfeasible. We compute the geoneutrino-induced electron and nuclear recoil spectra in different materials, under several optimistic assumptions. We identify germanium as the most promising target element due to the low nuclear recoil energy threshold that could be achieved. The minimum exposure required for detection would be O(10) ton-years. The realistic low thresholds achievable in germanium and silicon permit the detection of K-40 geoneutrinos. These are particularly important to determining Earth's formation history, but they are below the kinematic threshold of inverse beta decay, the detection process used in scintillator-based experiments.  
  Address [Gelmini, Graciela B.; Takhistov, Volodymyr] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000469022000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4024  
Permanent link to this record
 

 
Author Hooper, D.; Leane, R.K.; Tsai, Y.D.; Wegsman, S.; Witte, S.J. url  doi
openurl 
  Title A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 163 - 38pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract (up) In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter's elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.  
  Address [Hooper, Dan; Tsai, Yu-Dai] Fermilab Natl Accelerator Lab, Fermilab, Batavia, IL 60510 USA, Email: dhooper@fnal.gov;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555828300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4491  
Permanent link to this record
 

 
Author Blas, D.; Witte, S.J. url  doi
openurl 
  Title Imprints of axion superradiance in the CMB Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 103018 - 10pp  
  Keywords  
  Abstract (up) Light axions (m(a) less than or similar to 10(-10) eV) can form dense clouds around rapidly rotating astrophysical black holes via a mechanism known as rotational superradiance. The coupling between axions and photons induces a parametric resonance, arising from the stimulated decay of the axion cloud, which can rapidly convert regions of large axion number densities into an enormous flux of low-energy photons. In this work we consider the phenomenological implications of a superradiant axion cloud undergoing resonant decay. We show that the low-energy photons produced from such events will be absorbed over cosmologically short distances, potentially inducing massive shockwaves that heat and ionize the intergalactic medium over Mpc scales. These shockwaves may leave observable imprints in the form of anisotropic spectral distortions or inhomogeneous features in the optical depth.  
  Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: diego.blas@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000589606900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4609  
Permanent link to this record
 

 
Author McDermott, S.D.; Witte, S.J. url  doi
openurl 
  Title Cosmological evolution of light dark photon dark matter Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 6 Pages 063030 - 14pp  
  Keywords  
  Abstract (up) Light dark photons are subject to various plasma effects, such as Debye screening and resonant oscillations, which can lead to a more complex cosmological evolution than is experienced by conventional cold dark matter candidates. Maintaining a consistent history of dark photon dark matter requires ensuring that the superthennal abundance present in the early Universe (i) does not deviate significantly after the formation of the cosmic microwave background (CMB), and (ii) does not excessively leak into the Standard Model plasma after big band nucleosynthesis (BBN). We point out that the role of nonresonant absorption, which has previously been neglected in cosmological studies of this dark matter candidate, produces strong constraints on dark photon dark matter with mass as low as 10(-22) eV. Furthermore, we show that resonant conversion of dark photons after recombination can produce excessive heating of the intergalactic medium (IGM) which is capable of prematurely reionizing hydrogen and helium, leaving a distinct imprint on both the Ly-a forest and the integrated optical depth of the CMB. Our constraints surpass existing cosmological bounds by more than 5 orders of magnitude across a wide range of dark photon masses.  
  Address [McDermott, Samuel D.] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, POB 500, Batavia, IL 60510 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000522168800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4346  
Permanent link to this record
 

 
Author Blas, D.; Witte, S.J. url  doi
openurl 
  Title Quenching mechanisms of photon superradiance Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 12 Pages 123018 - 10pp  
  Keywords  
  Abstract (up) Rapidly rotating black holes are known to develop instabilities in the presence of a sufficiently light boson, a process which becomes efficient when the boson's Compton wavelength is roughly the size of the black hole. This phenomenon known as black hole superradiance generates an exponentially growing boson cloud at the expense of the rotational energy of the black hole. For astrophysical black holes with M similar to O(10)M-circle dot, the superradiant condition is achieved for bosons with m(b) similar to O(10(-11))eV; intriguingly, photons traversing the intergalactic medium acquire an effective mass (due to their interactions with the ambient plasma) which naturally resides in this range. The implications of photon superradiance, i.e., the evolution of the superradiant photon cloud and ambient plasma in the presence of scattering and particle production processes, have yet to be thoroughly investigated. Here, we enumerate and discuss a number of different processes capable of quenching the growth of the photon cloud, including particle interactions with the ambient electrons and backreactions on the effective mass (arising e.g., from thermal effects, pair production, ionization of the local background, and modifications to the dispersion relation from strong electric fields). This work naturally serves as a guide in understanding how interactions may allow light exotic bosons to evade superradiant constraints.  
  Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: diego.blas@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599093100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4666  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva