toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Campos, F.; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Das, S.P.; Hirsch, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing neutralino properties in minimal supergravity with bilinear R-parity violation Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 7 Pages 075001 - 8pp  
  Keywords  
  Abstract (up) Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.  
  Address [de Campos, F.] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Sao Paulo, Brazil, Email: camposc@feg.unesp.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309346800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1167  
Permanent link to this record
 

 
Author Edelhauser, L.; Porod, W.; Singh, R.K. url  doi
openurl 
  Title Spin discrimination in three-body decays Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 053 - 31pp  
  Keywords Beyond Standard Model; Supersymmetric Standard Model  
  Abstract (up) The identification of the correct model for physics beyond the Standard Model requires the determination of the spin of new particles. We investigate to which extent the spin of a new particle X can be identified in scenarios where it decays dominantly in three-body decays X -> f (f) over barY. Here we assume that Y is a candidate for dark matter and escapes direct detection at a high energy collider such as the LHC. We show that in the case that all intermediate particles are heavy, one can get information on the spins of X and Y at the LHC by exploiting the invariant mass distribution of the two standard model fermions. We develop a model-independent strategy to determine the spins without prior knowledge of the unknown couplings and test it in a series of Monte Carlo studies.  
  Address [Edelhaeuser, Lisa; Porod, Werner; Singh, Ritesh K.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ledelhaeuser@physik.uni-wuerzburg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282368500014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 355  
Permanent link to this record
 

 
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F. url  doi
openurl 
  Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 7 Pages 075002 - 8pp  
  Keywords  
  Abstract (up) The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.  
  Address [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282570100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 367  
Permanent link to this record
 

 
Author Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F. url  doi
openurl 
  Title Proposal for generalised supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme Type Journal Article
  Year 2013 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 184 Issue 3 Pages 698-719  
  Keywords SLHA; See-saw; PDG scheme  
  Abstract (up) The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.  
  Address [Basso, L.; Belyaev, A.; Khalil, S.; Moretti, S.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: lorenzo.basso@physik.uni-freiburg.de;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315125500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1341  
Permanent link to this record
 

 
Author Aebischer, J.; Brivio, I.; Celis, A.; Evans, J.A.; Jiang, Y.; Kumar, J.; Pan, X.Y.; Porod, W.; Rosiek, J.; Shih, D.; Staub, F.; Straub, D.M.; van Dyk, D.; Vicente, A. url  doi
openurl 
  Title WCxf : An exchange format for Wilson coefficients beyond the Standard Model Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 232 Issue Pages 71-83  
  Keywords High energy physics and computing; Models beyond the standard model  
  Abstract (up) We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved.  
  Address [Aebischer, Jason; Pan, Xuanyou; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany, Email: david.straub@tum.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442190200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3695  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva