|   | 
Details
   web
Records
Author n_TOF Collaboration; Kappeler, F.; Mengoni, A.; Mosconi, M.; Fujii, K.; Heil, M.; Domingo-Pardo, C.
Title Neutron Studies for Dating the Universe Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2094-2099
Keywords Neutron capture and inelastic scattering cross sections; Re/Os cosmo-chronometer
Abstract (up) The neutron capture cross sections of (186)Os and (187)Os are of key importance for defining the 8-process abundance of (187)Os at the formation of the solar system. This quantity can be used to determine the radiogenic abundance component of (187)Os from the decay of (187)Re (t(1/2) = 41.2 Gyr) and to infer the time-duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of (186)Os, (187)Os, and (188)Os have been measured at the CERN nTOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. From these data Maxwellian averaged capture cross sections have been calculated with uncertainties between 3.3 and 4.7%. Additional information was obtained by measuring the inelastic scattering cross section of (187)Os at the Karlsruhe 3.7 MV Van de Graaff accelerator and by neutron resonance analyses of the nTOF capture data to establish a comprehensive experimental basis for the Hauser-Feshbach statistical model. Consistent I-IF calculations for the capture and inelastic reaction channels were performed to determine the stellar enhancement factors, which are required to correct the Maxwellian averaged cross sections for the effect of thermally populated excited states. The consequences of this analysis for the s-process component of the (187)Os abundance and the related impact on the evaluation of the time-duration of Galactic nucleosynthesis via the Re/Os cosmo-chronometer are discussed.
Address [Kappeler, F] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: franz.kaeppeler@kit.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700156 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 742
Permanent link to this record
 

 
Author Courtoy, A.; Noguera, S.; Scopetta, S.
Title Double parton distributions in the pion in the Nambu-Jona-Lasinio model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 045 - 26pp
Keywords Deep Inelastic Scattering (Phenomenology); Phenomenological Models
Abstract (up) Two-parton correlations in the pion, a non perturbative information encoded in double parton distribution functions, are investigated in the Nambu-Jona-Lasinio model. It is found that double parton distribution functions expose novel dynamical information on the structure of the pion, not accessible through one-body parton distributions, as it happens in several estimates for the proton target and in a previous evaluation for the pion, in a light-cone framework. Expressions and predictions are given for double parton distributions corresponding to leading-twist Dirac operators in the quark vertices, and to different regularization methods for the Nambu-Jona-Lasinio model. These results are particularly relevant in view of forthcoming lattice data.
Address [Courtoy, Aurore] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: aurore.courtoy@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000521231400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4343
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 161 - 8pp
Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics
Abstract (up) We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Medium
Area Expedition Conference
Notes WOS:001087936700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5766
Permanent link to this record
 

 
Author Deak, M.; Kutak, K.
Title Kinematical constraint effects in the evolution equations based on angular ordering Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 068 - 13pp
Keywords QCD Phenomenology; Deep Inelastic Scattering (Phenomenology)
Abstract (up) We study effects of imposing various forms of the kinematical constraint on the full form of the CCFM equation and its non-linear extension. We find, that imposing the constraint in its complete form modifies significantly the shape of gluon density as compared to forms of the constraint used in numerical calculations and phenomenological applications. In particular the resulting gluon density is suppressed for large values of the hard scale related parameter and k(T) of gluon. This result might be important in description of jet correlations at Large Hadron Collider within the CCFM approach.
Address [Deak, Michal] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: michal.deak@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000356951500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2290
Permanent link to this record
 

 
Author Rinaldi, M.
Title GPDs at non-zero skewness in ADS/QCD model Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 771 Issue Pages 563-567
Keywords Phenomenological models; Deep inelastic scattering (phenomenology)
Abstract (up) We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zeroskewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forwardregime, are sensitive to non-trivialdetails of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.
Address [Rinaldi, Matteo] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mrinaldi@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000406183300084 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3262
Permanent link to this record