|   | 
Details
   web
Records
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D.
Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 030 - 41pp
Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract (up) We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.
Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5607
Permanent link to this record
 

 
Author Bagnaschi, E.; Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T.
Title SMEFT analysis of m(W) Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 308 - 22pp
Keywords Electroweak Precision Physics; SMEFT
Abstract (up) We use the Fitmaker tool to incorporate the recent CDF measurement of mW in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O-HWB, O-HD, O (l) (l) or O ((3)) (H l) with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O-HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z 0 vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.
Address [Bagnaschi, Emanuele; Ellis, John; You, Tevong] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: emanuele.bagnaschi@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000848742400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5349
Permanent link to this record