|   | 
Details
   web
Records
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Variations in fundamental constants at the cosmic dawn Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 25pp
Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization
Abstract (down) The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000551875400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4473
Permanent link to this record
 

 
Author Mena, O.; Palomares-Ruiz, S.; Vincent, A.C.
Title Flavor Composition of the High-Energy Neutrino Events in IceCube Type Journal Article
Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 113 Issue 9 Pages 091103 - 5pp
Keywords
Abstract (down) The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this Letter, we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha(e:)alpha(mu):alpha tau)(circle plus). Although the 7: 21 track-to-shower ratio is naively favored for the canonical (1:1:1)(circle plus) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E-2 energy spectrum, (1:1:1)(circle plus). at Earth is disfavored at 81% C. L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1)(circle plus) at Earth at 3 sigma C.L. Indeed, with the recently released 3-yr data, that flavor composition is excluded at 92% C. L. The best fit is obtained for (1:0:0)(circle plus). at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
Address [Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000341292800005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1920
Permanent link to this record
 

 
Author Moline, A.; Schewtschenko, J.A.; Palomares-Ruiz, S.; Boehm, C.; Baugh, C.M.
Title Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 069 - 23pp
Keywords dark matter simulations; dark matter theory; gamma ray theory
Abstract (down) The extragalactic gamma-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ACDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the gamma-ray and neutrino emission in these models may differ from ACDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ACDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ACDM as being due to CDM particles annihilating with a much weaker cross section than expected.
Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389859100053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2900
Permanent link to this record
 

 
Author Addazi, A. et al; Martinez-Mirave, P.; Mitsou, V.A.; Palomares-Ruiz, S.; Tortola, M.; Zornoza, J.D.
Title Quantum gravity phenomenology at the dawn of the multi-messenger era-A review Type Journal Article
Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 125 Issue Pages 103948 - 119pp
Keywords Lorentz invariance violation and deformation; Gamma-ray astronomy; Cosmic neutrinos; Ultra-high-energy cosmic rays; Gravitational waves
Abstract (down) The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
Address [Addazi, A.] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: jcarmona@unizar.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000830343400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5312
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title A fresh look into the interacting dark matter scenario Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 007 - 35pp
Keywords particle physics – cosmology connection; dwarfs galaxies; reionization; dark matter theory
Abstract (down) The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter photon elastic scattering cross section of sigma gamma DM < 8 x 10(-10) sigma(T) (m(DM)/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.
Address [Escudero, Miguel; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000434381500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3612
Permanent link to this record