|   | 
Details
   web
Records
Author Roca, L.; Oset, E.
Title Scalar resonances in the D+ -> K-K+K+ decay Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 3 Pages 034020 - 9pp
Keywords
Abstract (down) We study theoretically the resonant structure of the double Cabibbo suppressed D+ -> K-K+K+ decay. We start from an elementary production diagram, considered subleading in previous approaches, which cannot produce a final K-K+ pair at the tree level but which we show to be able to provide the strength of the decay through final meson-meson state interaction. The different meson-meson elementary productions are related through SU(3), and the final rescattering is implemented from a suitable implementation of unitary extensions of chiral perturbation theory, which generate dynamically the scalar resonances1 f(0)(980) and a(0)(980). We obtain a good agreement with recent experimental data from the LHCb Collaboration with a minimal freedom in the fit and show the dominance of the a(0)(980) contribution close to the threshold of the K-K+ spectrum.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000621332000004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4742
Permanent link to this record
 

 
Author Albaladejo, M.; Oller, J.A.; Oset, E.; Rios, G.; Roca, L.
Title Finite volume treatment of pi pi scattering and limits to phase shifts extraction from lattice QCD Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 071 - 22pp
Keywords Lattice QCD; Chiral Lagrangians; Phenomenological Models
Abstract (down) We study theoretically the effects of finite volume for pi pi scattering in order to extract physical observables for infinite volume from lattice QCD. We compare three different approaches for pi pi scattering (lowest order Bethe-Salpeter approach, N/D and inverse amplitude methods) with the aim of studying the effects of the finite size of the box in the potential of the different theories, specially the left-hand cut contribution through loops in the crossed t, u-channels. We quantify the error made by neglecting these effects in usual extractions of physical observables from lattice ()CD spectrum. We conclude that for pi pi phase-shifts in the scalar-isoscalar channel up to 800 MeV this effect is negligible for box sizes bigger than 2,5m(pi)(-1) and of the order of 5% at around 1.5 – 2m(pi)(-1). For isospin 2 the finite size effects can reach up to 10% for that energy. We also quantify the error made when using the standard Luscher method to extract physical observables from lattice QCD, which is widely used in the literature but is an approximation of the one used in the present work.
Address [Albaladejo, M.; Oller, J. A.; Rios, G.; Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: albaladejo@um.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1214
Permanent link to this record
 

 
Author Dai, L.R.; Roca, L.; Oset, E.
Title tau decay into a pseudoscalar and an axial-vector meson Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 9 Pages 096003 - 14pp
Keywords
Abstract (down) We study theoretically the decay tau(-) -> nu(tau)P(-)A, with P- a pi(-) or K- and A an axial-vector resonance b(1)(1235), h(1) (1170), h(1) (1380), a(1) (1260), f(1) (1285) or any of the two poles of the K-1 (1270). The process proceeds through a triangle mechanism where a vector meson pair is first produced from the weak current and then one of the vectors produces two pseudoscalars, one of which reinteracts with the other vector to produce the axial resonance. For the initial weak hadronic production we use a recent formalism to account for the hadronization after the initial quark-antiquark pair produced from the weak current, which explicitly filters G-parity states and obtain easy analytic formulas after working out the angular momentum algebra. The model also takes advantage of the chiral unitary theories to evaluate the vector-pseudoscalar (VP) amplitudes, where the axial-vector resonances were obtained as dynamically generated from the vector-pseudoscalar interaction. We make predictions for invariant mass distribution and branching ratios for the channels considered.
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000467392400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4003
Permanent link to this record
 

 
Author Dias, J.M.; Debastiani, V.R.; Roca, L.; Sakai, S.; Oset, E.
Title Binding of the BD(D)over-bar and BDD systems Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 9 Pages 094007 - 6pp
Keywords
Abstract (down) We study theoretically the BD (D) over bar and BDD systems to see if they allow for possible bound or resonant states. The three-body interaction is evaluated implementing the fixed center approximation to the Faddeev equations which considers the interaction of a D or (D) over bar particle with the components of a BD cluster, previously proved to form a bound state. We find an I(J(P)) = 1/2(0(-)) bound state for the BD (D) over bar system at an energy around 8925-8985 MeV within uncertainties, which would correspond to a bottom hidden-charm meson. In contrast, for the BDD system, which would be bottom double-charm and hence manifestly exotic, we have found hints of a bound state in the energy region 8935-8985 MeV, but the results are not stable under the uncertainties of the model, and we cannot assure, nor rule out, the possibility of a BDD three-body state.
Address [Dias, J. M.; Debastiani, V. R.; Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Apartado 22085, Valencia 46071, Spain, Email: jorgivan.morais@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000414959300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3359
Permanent link to this record
 

 
Author Debastiani, V.R.; Dias, J.M.; Liang, W.H.; Oset, E.
Title Omega(-)(b) -> (Xi(+)(c) K-)pi(-) decay and the Omega(c) states Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 9 Pages 094022 - 8pp
Keywords
Abstract (down) We study the weak decay Omega(-)(b) -> (Xi(+)(c) K-)pi(-), in view of the narrow Omega(c) states recently measured by the LHCb Collaboration and later confirmed by the Belle Collaboration. The Omega(c) (3050) and Omega(c) (3090) are described as meson-baryon molecular states, using an extension of the local hidden gauge approach in coupled channels. We investigate the Xi D, Xi(c)(K) over bar, and. Xi '(c) (K) over bar invariant mass distributions making predictions that could be confronted with future experiments, providing useful information that could help determine the quantum numbers and nature of these states.
Address [Debastiani, V. R.; Dias, J. M.; Oset, E.] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000451336400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3822
Permanent link to this record