|   | 
Details
   web
Records
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 044 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract (up) Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000742012500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5079
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S.
Title How many 1-loop neutrino mass models are there? Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 023 - 29pp
Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions
Abstract (up) It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000835685500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5320
Permanent link to this record
 

 
Author Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M.
Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 9 Pages 095033 - 13pp
Keywords
Abstract (up) Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000535451000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4403
Permanent link to this record
 

 
Author Helo, J.C.; Kovalenko, S.G.; Hirsch, M.; Pas, H.
Title Short-range mechanisms of neutrinoless double beta decay at the LHC Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 7 Pages 073011 - 19pp
Keywords
Abstract (up) Lepton number violation (LNV) mediated by short- range operators can manifest itself in both neutrinoless double beta decay (0 nu beta beta) and in processes with same- sign dilepton final states at the LHC. We derive limits from existing LHC data at root s = 8 TeV and compare the discovery potential of the forthcoming root s = 14 TeV phase of the LHC with the sensitivity of current and future 0 nu beta beta decay experiments, assuming the short-range part of the 0 nu beta beta decay amplitude dominates. We focus on the first of two possible topologies triggered by one fermion and two bosons in the intermediate state. In all cases, except for the pure leptoquark mechanism, the LHC will be more sensitive than 0 nu beta beta decay in the future. In addition, we propose to search for a charge asymmetry in the final state leptons and to use different invariant mass peaks as a possible tool to discriminate the various possible mechanisms for LNV signals at the LHC.
Address [Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juan.heloherrera@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000326111000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1627
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Wang, Z.S.
Title Heavy neutral fermions at the high-luminosity LHC Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 056 - 23pp
Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model
Abstract (up) Long-lived light particles (LLLPs) appear in many extensions of the standard model. LLLPs are usually motivated by the observed small neutrino masses, by dark matter or both. Typical examples for fermionic LLLPs (a.k.a. heavy neutral fermions, HNFs) are sterile neutrinos or the lightest neutralino in R-parity violating supersymmetry. The high luminosity LHC is expected to deliver up to 3/ab of data. Searches for LLLPs in dedicated experiments at the LHC could then probe the parameter space of LLLP models with unprecedented sensitivity. Here, we compare the prospects of several recent experimental proposals, FASER, CODEX-b and MATHUSLA, to search for HNFs and discuss their relative merits.s
Address [Helo, Juan Carlos] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile, Email: jchelo@userena.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438141500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3656
Permanent link to this record