|   | 
Details
   web
Records
Author Beltran Jimenez, J.; Delhom, A.
Title Ghosts in metric-affine higher order curvature gravity Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 8 Pages 656 - 7pp
Keywords
Abstract (up) We disprove the widespread belief that higher order curvature theories of gravity in the metric-affine formalism are generally ghost-free. This is clarified by considering a sub-class of theories constructed only with the Ricci tensor and showing that the non-projectively invariant sector propagates ghost-like degrees of freedom. We also explain how these pathologies can be avoided either by imposing a projective symmetry or additional constraints in the gravity sector. Our results put forward that higher order curvature gravity theories generally remain pathological in the metric-affine (and hybrid) formalisms and highlight the key importance of the projective symmetry and/or additional constraints for their physical viability and, by extension, of general metric-affine theories.
Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000479306500020 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4109
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 26pp
Keywords modified gravity; alternatives to inflation; gravity
Abstract (up) We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000346105300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2039
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Tensor perturbations in a general class of Palatini theories Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 16pp
Keywords modified gravity; inflation; gravity; dark energy theory
Abstract (up) We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Address [Jimenez, Jose Beltran] Univ Louvain, Inst Math & Phys, Ctr Cosmol Particle Phys & Phenomenol, B-1318 Louvain, Belgium, Email: jose.beltran@cpt.univ.mrs.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000359215400027 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2368
Permanent link to this record
 

 
Author Alfonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E.
Title The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 23 Pages 235003 - 20pp
Keywords modified gravity; metric-affine theories; torsion; non-minimal couplings
Abstract (up) We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
Address [Alfonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000414726500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3353
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 029 - 23pp
Keywords alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)
Abstract (up) We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000413332400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3337
Permanent link to this record