toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Linster, M.; Lopez-Pavon, J.; Ziegler, R. url  doi
openurl 
  Title Neutrino observables from a U(2) flavor symmetry Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 1 Pages 015020 - 9pp  
  Keywords  
  Abstract (down) We study the predictions for CP phases and absolute neutrino mass scale for broad classes of models with a U(2)-like flavor symmetry. For this purpose we consider the same special textures in neutrino and charged lepton mass matrices that are successful in the quark sector. While in the neutrino sector the U(2) structure enforces two texture zeros, the contribution of the charged lepton sector to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix can be parametrized by two rotation angles. Restricting to the cases where at least one of these angles is small, we obtain three representative scenarios. In all scenarios we obtain a narrow prediction for the sum of neutrino masses in the range of 60-75 meV, possibly in the reach of upcoming galaxy survey experiments. All scenarios can be excluded if near-future experimental date provide evidence for either neutrinoless double-beta decay or inverted neutrino mass ordering.  
  Address [Linster, Matthias; Ziegler, Robert] Karlsruhe Inst Technol, Inst Theoret Teilchenphys, D-76131 Karlsruhe, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609014300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4689  
Permanent link to this record
 

 
Author Folgado, M.G.; Donini, A.; Rius, N. url  doi
openurl 
  Title Spin-dependence of gravity-mediated dark matter in warped extra-dimensions Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 3 Pages 197 - 13pp  
  Keywords  
  Abstract (down) We study the possibility that Dark Matter (DM) particles of spin 0, 1/2 or 1 may interact gravitationally with Standard Model (SM) particles within the framework of a warped Randall-Sundrum (RS) model. Both the Dark Matter and the Standard Model particles are assumed to be confined to the infra-red (IR) brane and only interchange Kaluza-Klein excitations of the graviton and the radion (adopting the Goldberger-Wise mechanism to stabilize the size of the extra-dimension). We analyze the different DM annihilation channels and find that the presently observed Dark Matter relic abundance, Omega DM, can be obtained within the freeze-out mechanism for DM particles of all considered spins. This extends our first work concerning scalar DM in RS scenarios (Folgado et al., in JHEP 01:161. https://doi.org/10.1007/JHEP01(2020)161, 2020) and put it on equal footing with our second work in which we studied DM particles of spin 0, 1/2 and 1 in the framework of the Clockwork/Linear Dilaton (CW/LD) model (Folgado et al., in JHEP 20:036. https://doi.org/10.1007/JHEP04(2020)036, 2020). We study the region of the model parameter space for which Omega DM is achieved and compare it with the different experimental and theoretical bounds. We find that, for DM particles mass mDM is an element of [1,15] TeV, most of the parameter space is excluded by the current constraints or will be excluded by the LHC Run III or by the LHC upgrade, the HL-LHC. The observed DM relic abundance can still be achieved for DM masses mDM is an element of [4,15] TeV and mG1<10 TeV for scalar and vector boson Dark Matter. On the other hand, for spin 1/2 fermion Dark Matter, only a tiny region with mDM<is an element of>[4,15] TeV, mG1 is an element of [5,10] TeV and Lambda >mG1 is compatible with theoretical and experimental bounds. We have also studied the impact of the radion in the phenomenology, finding that it does not modify significantly the allowed region for DM particles of any spin (differently from the CW/LD case, where its impact was quite significant in the case of scalar DM). We, eventually, briefly compare results in RS with those obtained in the CW/LD model.  
  Address [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000625431000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4767  
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 061 - 29pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Large Extra Dimensions  
  Abstract (down) We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000639271100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4792  
Permanent link to this record
 

 
Author Ternes, C.A.; Gariazzo, S.; Hajjar, R.; Mena, O.; Sorel, M.; Tortola, M. url  doi
openurl 
  Title Neutrino mass ordering at DUNE: An extra nu bonus Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 9 Pages 093004 - 10pp  
  Keywords  
  Abstract (down) We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.  
  Address [Ternes, Christoph A.; Gariazzo, Stefano; Hajjar, Rasmi; Mena, Olga; Sorel, Michel; Tortola, Mariam] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: chternes@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498060600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4205  
Permanent link to this record
 

 
Author Parashar, S.; Karan, A.; Avnish; Bandyopadhyay, P.; Ghosh, K. url  doi
openurl 
  Title Phenomenology of scalar leptoquarks at the LHC in explaining the radiative neutrino masses, muon g-2, and lepton flavor violating observables Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 095040 - 34pp  
  Keywords  
  Abstract (down) We study the phenomenology of a particular leptoquark extension of the Standard Model (SM), namely the doublet-singlet scalar leptoquark extension of the SM (DSL-SM). Besides generating Majorana mass for neutrinos, these leptoquarks contribute to muon and electron (g – 2) and various lepton flavor violating processes. Collider signatures of the benchmark points (BPs), consistent with the neutrino oscillation data, anomalous muon/electron magnetic moments, experimental bounds on the charged lepton flavor violation observables, etc., are studied at the LHC/FCC with center-of-mass energies of 14, 27 and 100 TeV. While the two -1=3 charged colored scalars from the singlet and the doublet leptoquark mix with each other, the charge 2=3 colored scalar from the doublet leptoquark remains pure. With a near-degenerate mass spectrum, the pure and mixed leptoquark states are shown to be distinguishable from multiple final states, while discerning between the two mixed states remains very challenging.  
  Address [Parashar, Snehashis; Bandyopadhyay, Priyotosh] Indian Inst Technol Hyderabad, Sangareddy 502284, Telangana, India, Email: ph20resch11006@iith.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000956618800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5506  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva