toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Light ring images of double photon spheres in black hole and wormhole spacetimes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 084057 - 16pp  
  Keywords  
  Abstract (up) The silhouette of a black hole having a critical curve (an unstable bound photon orbit) when illuminated by an optically thin accretion disk whose emission is confined to the equatorial plane shows a distinctive central brightness depression (the shadow) whose outer edge consists of a series of strongly lensed, selfsimilar rings superimposed with the disk???s direct emission. While the size and shape of the critical curve depend only on the background geometry, the pattern of bright and dark regions (including the size and depth of the shadow itself) in the image is strongly influenced by the (astro)physics of the accretion disk. This aspect makes it difficult to extract clean and clear observational discriminators between the Kerr black hole and other compact objects. In the presence of a second critical curve, however, observational differences become apparent. In this work we shall consider some spherically symmetric black hole and wormhole geometries characterized by the presence of a second critical curve, via a uniparametric family of extensions of the Schwarzschild metric. By assuming three toy models of geometrically thin accretion disks, we show the presence of additional light rings in the intermediate region between the two critical curves. The observation of such rings could represent a compelling evidence for the existence of black hole mimickers having multiple critical curves.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810908800018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5261  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Stellar structure models in modified theories of gravity: Lessons and challenges Type Journal Article
  Year 2020 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 876 Issue Pages 1-75  
  Keywords Stellar structure; Modified gravity; Palatini formalism; Neutron stars; Brown dwarfs; Relativistic stars; Weak field; f(R) theories; Born-Infeld theory; Horndeski theory  
  Abstract (up) The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar's hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star's mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar's limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570298900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4531  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S. url  doi
openurl 
  Title The Cauchy problem in hybrid metric-Palatini f(X)-gravity Type Journal Article
  Year 2014 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 11 Issue 5 Pages 1450042 - 12pp  
  Keywords Cauchy problem; modified gravity; hybrid metric-Palatini gravity  
  Abstract (up) The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein-Hilbert Lagrangian an f(R)-term constructed a la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336527100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1813  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J. url  doi
openurl 
  Title Novel connection between lump-like structures and quantum mechanics Type Journal Article
  Year 2018 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 133 Issue 7 Pages 251 - 10pp  
  Keywords  
  Abstract (up) This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.  
  Address [Bazeia, D.; Losano, L.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil, Email: bazeia@fisica.ufpb.br  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439341000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3670  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Menezes, R.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Thick brane in f(R) gravity with Palatini dynamics Type Journal Article
  Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 75 Issue Pages 569 - 10pp  
  Keywords  
  Abstract (up) This work deals with modified gravity in five dimensional spacetime. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR^n, where the small parameter ϵ controls the deviation from the standard thick brane case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2592  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva