toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez, M.; Kovalenko, S.G.; Hirsch, M. url  doi
openurl 
  Title QCD running in neutrinoless double beta decay: Short-range mechanisms Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 013017 - 11pp  
  Keywords  
  Abstract (up) The decay rate of neutrinoless double beta (0 nu beta beta) decay contains terms from heavy particle exchange, which lead to dimension-9 (d = 9) six fermion operators at low energies. Limits on the coefficients of these operators have been derived previously neglecting the running of the operators between the high scale, where they are generated, and the energy scale of 0 nu beta beta decay, where they are measured. Here we calculate the leading-order QCD corrections to all possible d = 9 operators contributing to the 0 nu beta beta amplitude and use renormalization group running to calculate 1-loop improved limits. Numerically, QCD running dramatically changes some limits by factors of the order of or larger than typical uncertainties in nuclear matrix element calculations. For some specific cases, operator mixing in the running changes limits even by up to 3 orders of magnitude. Our results can be straightforwardly combined with new experimental limits or improved nuclear matrix element calculations to rederive updated limits on all short-range contributions to 0 nu beta beta decay.  
  Address [Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso 2390123, Chile, Email: marcela.gonzalezp@titulados.usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368516100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2539  
Permanent link to this record
 

 
Author Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G. url  doi
openurl 
  Title Scalar-mediated double beta decay and LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 130 - 15pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (up) The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.  
  Address [Gonzalez, L.; Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: lorena.gonzalez@alumnos.usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399774600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3060  
Permanent link to this record
 

 
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F. url  doi
openurl 
  Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 7 Pages 075002 - 8pp  
  Keywords  
  Abstract (up) The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.  
  Address [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282570100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 367  
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title Mapping the SMEFT to discoverable models Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 229 - 34pp  
  Keywords SMEFT; Other Weak Scale BSM Models  
  Abstract (up) The matching of specific new physics scenarios onto the SMEFT framework is a well-understood procedure. The inverse problem, the matching of the SMEFT to UV scenarios, is more difficult and requires the development of new methods to perform a systematic exploration of models. In this paper we use a diagrammatic technique to construct in an automated way a complete set of possible UV models (given certain, well specified assumptions) that can produce specific groups of SMEFT operators, and illustrate its use by generating models with no tree-level contributions to four-fermion (4F) operators. Those scenarios, which only contribute to 4F at one-loop order, can contain relatively light particles that could be discovered at the LHC in direct searches. For this class of models, we find an interesting interplay between indirect SMEFT and direct searches. We discuss some examples on how this interplay would look like when combining low-energy observables with the SMEFT Higgs-fermion analyses and searches for resonance at the LHC.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Hilb Weg 22, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861474500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5361  
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F. url  doi
openurl 
  Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 149 - 18pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract (up) The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.  
  Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326047200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva