toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 760 Issue Pages 57-67  
  Keywords GEANT4 simulations; Neutron time of flight; Neutron background; N_TOF; Neutron capture  
  Abstract (down) The neutron sensitivity of the Cr6D6 detector setup used at nTOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire nTOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a(nat)-C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured C-nat yield has been discovered, which prevents the use of C-nat data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.  
  Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338350500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1828  
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R. doi  openurl
  Title The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 774 Issue Pages 17-24  
  Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries  
  Abstract (down) The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.  
  Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347407800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2076  
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Egea, J.; Huyuk, T.; Gadea, A.; Aliaga, R.; Jurado-Gomez, M.L.; Perez-Vidal, R.M. doi  openurl
  Title NEDA-NEutron Detector Array Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 927 Issue Pages 81-86  
  Keywords NEDA; Nuclear structure; Gamma-ray spectroscopy; Neutron detector; Liquid scintillator; Digital electronics; Neutron-gamma discrimination  
  Abstract (down) The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.  
  Address [Valiente-Dobon, J. J.; Jaworski, G.; Goasduff, A.; Egea, J.; Modamio, V; de Angelis, G.; Bissiato, E.; Carturan, S.; Cocconi, P.; Conventi, D.; Deltoro, J. M.; Hadynska-Klekn, K.; Illan, A.; Raggio, A.; Siciliano, M.; Zanon, I] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462142700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3956  
Permanent link to this record
 

 
Author AGATA Collaboration; Domingo-Pardo, C.; Bazzacco, D.; Doornenbal, P.; Farnea, E.; Gadea, A.; Gerl, J.; Wollersheim, H.J. doi  openurl
  Title Conceptual design and performance study for the first implementation of AGATA at the in-flight RIB facility of GSI Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 694 Issue Pages 297-312  
  Keywords gamma-Ray spectroscopy; Tracking; Monte Carlo  
  Abstract (down) The main objective of the Advanced GAmma Tracking Array (AGATA) is the investigation of the structure of exotic nuclei at the new generation of RIB facilities. As part of the preparatory phase for FAIR-NUSTAR, AGATA is going to be installed at the FRS fragmentation facility of the GSI centre for an experimental campaign to be performed in 2012 and 2013. Owing to its gamma-ray tracking capabilities and the envisaged enhancement in resolving power, a series of in-flight gamma-ray spectroscopy experiments are being planned. The present work describes the conceptual design of this first implementation of AGATA at GSI-FRS, and provides information about the expected performance figures. According to the characteristics of each particular experiment, it is foreseen that the target-array distance is adjusted in order to achieve the optimum compromise between detection efficiency and energy resolution, or to cover an specific angular range of the emitted electromagnetic radiation. Thus, a comprehensive Monte Carlo study of the detection sensitivity in terms of photopeak efficiency, resolution and peak-to-total ratio, as a function of the target-array distance is presented. Several configurations have been investigated, and MC-calculations indicate that a remarkable enhancement in resolving power can be achieved when double-cluster AGATA detectors are developed and implemented. Several experimental effects are also investigated. This concerns the impact of passive materials between the target and the array, the angular distribution of the detection efficiency and the influence of target thickness effects and transition lifetimes in the attainable detection sensitivity. A short overview on half-life measurements via lineshape effects utilizing AGATA is also presented. (C) 2012 Elsevier B.V. All rights reserved.  
  Address [Domingo-Pardo, C.; Gadea, A.] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311020500041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1240  
Permanent link to this record
 

 
Author Cervello, A.; Carrio, F.; Garcia, R.; Martos, J.; Soret, J.; Torres, J.; Valero, A. doi  openurl
  Title The TileCal PreProcessor interface with the ATLAS global data acquisition system at the HL-LHC Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1043 Issue Pages 167492 - 2pp  
  Keywords ATLAS; Tile Calorimeter; HL-LHC; TilePPr; FELIX; SWROD; DAQ  
  Abstract (down) The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. It will take place throughout 2026-2028, corresponding to the Long Shutdown 3. During this upgrade, the ATLAS Tile Hadronic Calorimeter (TileCal) will replace completely on-and off-detector electronics adopting a new read-out architecture. Signals captured from TileCal are digitized by the on-detector electronics and transmitted to the TileCal PreProcessor (TilePPr) located off-detector, which provides the interface with the ATLAS trigger and data acquisition systems.TilePPr receives, process and transmits the data from the on-detector system and transmits it to the Front -End Link eXchange (FELIX) system. FELIX is the ATLAS common hardware in all the subdetectors designed to act as a data router, receiving and forwarding data to the SoftWare Read-Out Driver (SWROD) computers. FELIX also distributes the Timing, Trigger and Control (TTC) signals to the TilePPr to be propagated to the on-detector electronics. The SWROD is an ATLAS common software solution to perform detector specific data processing, including configuration, calibration, control and monitoring of the partitionIn this contribution we will introduce the new read-out elements for TileCal at the HL-LHC, the intercon-nection between the off-detector electronics and the FELIX system, the configuration and implementation for the test beam campaigns, as well as future developments of the preprocessing and monitoring status of the calorimeter modules through the SWROD infrastructure.  
  Address [Cervello, Antonio; Carrio, Fernando; Valero, Alberto] UV, CSIC, Inst Fis Corpuscular, Carrer Catedrat Jose Beltran Martinez 2, Valencia 46980, Spain, Email: antonio.cervello@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000868495700012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5399  
Permanent link to this record
 

 
Author Real, D.; Calvo, D. doi  openurl
  Title Production requirements and functional tests of the KM3NeT Digital Optical Module Power Board Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1042 Issue Pages 167426 - 3pp  
  Keywords Power supply; Electronics reliability; Functional tests  
  Abstract (down) The KM3NeT research facility is being built in the Mediterranean Sea. It consists of matrices of optical detectors, the so-called Digital Optical Module. Each of this elementary detector holds a set of 31 small-area photomultipliers, which detect the Cherenkov light generated by secondary particles produced in neutrino interactions. It includes also the acquisition electronics and the power board which supplies both, the acquisition electronics and the photomultipliers. The production of electronics boards needs to have a high quality and reliability level as it is going to be deployed for more than ten years without any maintenance possible. This work presents the requirements and the qualification tests being implemented in order to increase the reliability of the Power Board of the acquisition electronics of KM3NeT during the mass production. At the moment, more than one thousand board have been produced. Results on the production of the boards, including the production yield is presented. From the already produced boards, more than 350 have been already deployed and are operative in the detectors.  
  Address [Real, D.; Calvo, D.; KM3NeT Collaboration] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000873950500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5403  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1040 Issue Pages 167132 - 13pp  
  Keywords Time calibration; Instrumentation; Neutrino telescopes  
  Abstract (down) The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000841467100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5342  
Permanent link to this record
 

 
Author Luo, X.L. et al; Agramunt, J.; Egea, F.J.; Gadea, A.; Huyuk, T. doi  openurl
  Title Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 897 Issue Pages 59-65  
  Keywords Pile-up; Digital; First-order derivative; Neutron-gamma discrimination; Liquid scintillator  
  Abstract (down) The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and.. standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or gamma rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-gamma discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.  
  Address [Luo, X. L.] Acad Mil Med Sci, Natl Innovat Inst Def Technol, Beijing 100010, Peoples R China, Email: delongtmac@163.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433206800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3591  
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Etxebeste, A.; Muñoz, E.; Oliver, J.F.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G. doi  openurl
  Title Performance evaluation of MACACO II Compton camera Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages 165702 - 7pp  
  Keywords Compton camera; Hadron therapy; LaBr3; Silicon photomultipliers  
  Abstract (down) The IRIS group at IFIC-Valencia has developed a second version of a Compton camera prototype for hadron therapy treatment monitoring, with the aim of improving the performance with respect to its predecessor. The system is composed of three Lanthanum (III) bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs). The detector energy resolution has been improved to 5.6% FWHM at 511 keV and an angular resolution of 8.0 degrees has been obtained. Images of a Na-22 point-like source have been reconstructed selecting two and three interaction events. Moreover, the experimental data have been reproduced with Monte Carlo simulations using a Compton camera module (CCMod) in GATE v8.2 obtaining a good correlation.  
  Address [Barrientos, L.; Borja-Lloret, M.; Munoz, E.; Oliver, J. F.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: lbarrien@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701263400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4976  
Permanent link to this record
 

 
Author Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martinez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P. url  doi
openurl 
  Title In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 832 Issue Pages 231-242  
  Keywords Diamond sensor; Beam halo; ATF2  
  Abstract (down) The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of similar to 10(6) has been successfully demonstrated and confirmed for the first time in simultaneous beam core (similar to 10(6) electrons) and beam halo (similar to 10(3) electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an a source, as well as using the electron beams at PHIL, a low energy (<5 MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.  
  Address [Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Bambade, P.] Univ Paris Saclay, Univ Paris 11, CNRS, LAL,IN2P3, Orsay, France, Email: sliu@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382256400026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2786  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva