|   | 
Details
   web
Records
Author Agarwalla, S.K.; Hernandez, P.
Title Probing the neutrino mass hierarchy with Super-Kamiokande Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 14pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract (up) We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of similar to 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L similar or equal to 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the nu(mu) -> nu(e) oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.
Address [Agarwalla, Sanjib Kumar; Hernandez, Pilar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000310851600047 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1251
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T.
Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 161 - 20pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract (up) We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.
Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1161
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.
Title Minimal models with light sterile neutrinos Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 105
Keywords
Abstract (up) We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n(R) gauge singlet fermions (“right-handed neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n(R) = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n(R) = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000293741500041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 760
Permanent link to this record
 

 
Author Bernardoni, F.; Hernandez, P.; Necco, S.
Title Heavy-light mesons in the epsilon-regime Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 070 - 30pp
Keywords Lattice QCD; Heavy Quark Physics; Chiral Lagrangians
Abstract (up) We study the finite-size scaling of heavy-light mesons in the static limit. We compute two-point functions of chiral current densities as well as pseudoscalar densities in the epsilon-regime of heavy meson Chiral Perturbation Theory (HMChPT). As expected, finite volume dependence turns out to be significant in this regime and can be predicted in the effective theory in terms of the infinite-volume low-energy couplings. These results might be relevant for extraction of heavy-meson properties from lattice simulations.
Address [Bernardoni, F.; Hernandez, P.] Univ Valencia, Dpto Fis Teor, E-46071 Valencia, Spain, Email: fabio.bernardoni@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000273717700041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 510
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Pena, C.; Romero-Lopez, F.
Title Dissecting the Delta I=1/2 rule at large N-c Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 7 Pages 638 - 12pp
Keywords
Abstract (up) We study the scaling of kaon decay amplitudes with the number of colours, N-c, in a theory with four degenerate flavours, N-f = 4. In this scenario, two current-current operators, Q(+/-), mediate Delta S = 1 transitions, such as the two isospin amplitudes of non-leptonic kaon decays for K -> (pi pi)(I=0,2), A(0) and A(2.) In particular, we concentrate on the simpler K -> pi amplitudes, A(+/-), mediated by these two operators. A diagrammatic analysis of the large-N-c scaling of these observables is presented, which demonstrates the anticorrelation of the leading O(1/N-c) and O(N-f/N-c(2)) corrections in both amplitudes. Using our new N-f = 4 and previous quenched data, we confirm this expectation and show that these corrections are naturally large and may be at the origin of the Delta I = 1/2 rule. The evidence for the latter is indirect, based on the matching of the amplitudes to their prediction in Chiral Perturbation Theory, from which the LO low-energy couplings of the chiral weak Hamiltonian, g(+/-), can be determined. A NLO estimate of the K -> (pi pi)(I=0,2) isospin amplitudes can then be derived, which is in good agreement with the experimental value.
Address [Donini, Andrea; Hernandez, Pilar; Romero-Lopez, Fernando] IFIC CSIC UVEG, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: fernando.romero@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000552393200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4480
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Pena, C.; Romero-Lopez, F.
Title Nonleptonic kaon decays at large N-c Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 11 Pages 114511 - 6pp
Keywords
Abstract (up) We study the scaling with the number of colors, N-c, of the weak amplitudes mediating kaon mixing and decay. We evaluate the amplitudes of the two relevant current-current operators on the lattice for N-c = 3-7. We conclude that the subleading 1/N-c corrections in B-k, are small, but those in the K -> pi pi amplitudes are large and fully anticoirelated in the I = 0, 2 isospin channels. We briefly comment on the implications for the Delta I = 1/2 rule.
Address [Donini, A.; Hernandez, P.; Romero-Lopez, F.] IFIC CSIC UVEG, Edificio Inst Invest,Apt 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000390275100007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2894
Permanent link to this record
 

 
Author Agrawal, P. et al; Hernandez, P.; Lopez-Pavon, J.
Title Feebly-interacting particles: FIPs 2020 workshop report Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 1015 - 137pp
Keywords
Abstract (up) With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
Address [Agrawal, P.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England, Email: gaia.lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000720658000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5043
Permanent link to this record