MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Mamuzic, J., Mitsou, V. A., Papavassiliou, J., Ruiz de Austri, R., et al. (2021). First Search for Dyons with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions. Phys. Rev. Lett., 126(7), 071801–7pp.
Abstract: The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g(D)) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g(D) with mass limits in the range 870-2040 GeV.
|
Vento, V. (2018). Skyrmions at high density. Phys. Part. Nuclei Lett., 15(4), 367–370.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.
|
Vento, V. (2017). Skyrmions at high density. Int. J. Mod. Phys. E, 26(1-2), 1740029–15pp.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark-gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.
|
Gonzalez, P., Mathieu, V., & Vento, V. (2011). Heavy meson interquark potential. Phys. Rev. D, 84(11), 114008–7pp.
Abstract: The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling (effective charge) in the infrared, which is best understood as a dynamical generation of a gluon mass function, giving rise to a momentum dependence which is free from infrared divergences. We calculate the interquark static potential for heavy mesons by assuming that it is given by a massive One Gluon Exchange interaction and compare with phenomenologyical fits inspired by lattice QCD. We apply these potential forms to the description of quarkonia and conclude that, even though some aspects of the confinement mechanism are absent in the Dyson-Schwinger formalism, the spectrum can be reasonably reproduced. We discuss possible explanations for this outcome.
|
Vento, V. (2017). AdS gravity and the scalar glueball spectrum. Eur. Phys. J. A, 53(9), 185–4pp.
Abstract: The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence.
|