|   | 
Details
   web
Records
Author Bayar, M.; Oset, E.
Title (K)over-bar N N absorption within the framework of the fixed-center approximation to Faddeev equations Type Journal Article
Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 88 Issue 4 Pages 044003 - 8pp
Keywords
Abstract (down) We present a method to evaluate the (K) over bar absorption width in the bound (K) over bar N N system. Most calculations of this system ignore this channel and only consider the (K) over bar N -> pi Sigma conversion. Other works make a qualitative calculation using perturbative methods. Since the (1405) resonance is playing a role in the process, the same resonance is changed by the presence of the absorption channels andwe find that a full nonperturbative calculation is called for, which we present here. We employ the fixed center approximation to Faddeev equations to account for (K) over bar rescattering on the (NN) cluster and we find that the width of the states found previously for S = 0 and S = 1 increases by about 30 MeV due to the (K) over bar N N absorption, to a total width of about 80 MeV.
Address [Bayar, M.; Oset, E.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000326096400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1624
Permanent link to this record
 

 
Author Martinez Torres, A.; Oset, E.
Title The gamma d -> K(+)K(-)np reaction and an alternative explanation for the “Theta(+)(1540) pentaquark” peak Type Journal Article
Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 81 Issue 5 Pages 055202 - 16pp
Keywords
Abstract (down) We present a calculation of the gamma d -> K(+)K(-)np reaction with the aim of seeing whether the experimental peak observed in the K(+)n invariant mass around 1526 MeV, from where evidence for the existence of the Theta(+) has been claimed, can be obtained without this resonance as a consequence of the particular dynamics of the process and the cuts applied in the experimental setup. We find that a combination of facts leads indeed to a peak around 1530 MeV for the invariant mass of K(+)n without the need to invoke any new resonance around this energy. This, together with statistical fluctuations that we prove to be large with the statistics of the experiment, is likely to produce the narrower peak observed there.
Address [Martinez Torres, A.] Univ Politecn Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46071 Valencia, Spain, Email: amartine@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes ISI:000278144800057 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 443
Permanent link to this record
 

 
Author Montanari, D. et al; Gadea, A.
Title Pair neutron transfer in Ni-60+Sn-116 probed via gamma-particle coincidences Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 5 Pages 054623 - 6pp
Keywords
Abstract (down) We performed a gamma-particle coincidence experiment for the Ni-60 + Sn-116 system to investigate whether the population of the two-neutron pickup channel leading to Ni-62 is mainly concentrated in the ground-state transition, as has been found in a previous work [D. Montanari et al., Phys. Rev. Lett. 113, 052501 (2014)]. The experiment has been performed by employing the PRISMA magnetic spectrometer coupled to the Advanced Gamma Tracking Array (AGATA) demonstrator. The strength distribution of excited states corresponding to the inelastic, one-and two-neutron transfer channels has been extracted. We found that in the two-neutron transfer channel the strength to excited states corresponds to a fraction (less than 24%) of the total, consistent with the previously obtained results that the 2n channel is dominated by the ground-state to ground-state transition.
Address [Montanari, D.; Bazzacco, D.; Mengoni, D.; Montagnoli, G.; Recchia, F.; Scarlassara, F.; Ur, C. A.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000376921400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2705
Permanent link to this record
 

 
Author Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.
Title Partial-wave decomposition of the finite-range effective tensor interaction Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 6 Pages 064001 - 6pp
Keywords
Abstract (down) We perform a detailed analysis of the properties of the finite-range tensor term associated with the Gogny and M3Y effective interactions. In particular, by using a partial-wave decomposition of the equation of state of symmetric nuclear matter, we show how we can extract their tensor parameters directly from microscopic results based on bare nucleon-nucleon interactions. Furthermore, we show that the zero-range limit of both finite-range interactions has the form of the next-to-next-to-next-leading-order (N3LO) Skyrme pseudopotential, which thus constitutes a reliable approximation in the density range relevant for finite nuclei. Finally, we use Brueckner-Hartree-Fock results to fix the tensor parameters for the three effective interactions.
Address [Davesne, D.; Becker, P.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000377302500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2718
Permanent link to this record
 

 
Author Xie, J.J.; Liang, W.H.; Oset, E.
Title (K)over-bar-induced formation of the f(0)(980) and a(0)(980) resonances on proton targets Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 3 Pages 035206 - 8pp
Keywords
Abstract (down) We perform a calculation of the cross section for nine reactions induced by (K) over bar scattering on protons. The reactions studied are K- p -> Lambda pi(+)pi(-), K- p -> Sigma(0)pi(+)pi(-), K- p -> Lambda pi(0)eta, K- p -> Sigma(0)pi(0)eta, K- p -> Sigma(+)pi(-)eta, (K) over bar (0) p -> Lambda pi(+)eta, (K) over bar (0) p -> Sigma(0)pi(+)eta, (K) over bar (0) p -> Sigma(+)pi(+)pi(-), and (K) over bar (0) p -> Sigma+pi(0)eta. We find that in the reactions producing pi(+)pi(-), a clear peak for the f(0)(980) resonance is found, while no trace of f(0)(500) appears. Similarly, in the cases of p. production, a strong peak is found for the a(0)(980) resonance, with the characteristic strong cusp shape. Cross sections and invariant mass distributions are evaluated which should serve, by comparing them with future data, to test the dynamics of the chiral unitary approach used for the evaluations and the nature of these resonances.
Address [Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: xiejujun@impcas.ac.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000372719900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2605
Permanent link to this record