|   | 
Details
   web
Records
Author Siciliano, M. et al; Gadea, A.; Perez-Vidal, R.M.
Title Lifetime measurements in the even-even Cd102-108 isotopes Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 3 Pages 034320 - 16pp
Keywords
Abstract (up) Background: The heaviest T-z = 0 doubly-magic nucleus, Sn-100, and the neighboring nuclei offer unique opportunities to investigate the properties of nuclear interaction. For instance, the structure of light-Sn nuclei has been shown to be affected by the delicate balance between nuclear-interaction components, such as pairing and quadrupole correlations. From Cd to Te, many common features and phenomena have been observed experimentally along the isotopic chains, leading to theoretical studies devoted to a more general and comprehensive study of the region. In this context, having only two proton holes in the Z = 50 shell, the Cd isotopes are expected to present properties similar to those found in the Sn isotopic chain. Purpose: The aim of this work was to measure lifetimes of excited states in neutron-deficient nuclei in the vicinity of Sn-100. Methods: The neutron-deficient nuclei in the N approximate to Z approximate to 50 region were populated using a multinucleon transfer reaction with a Cd-106 beam and a Mo-92 target. The beamlike products were identified by the VAMOS++ spectrometer, while the gamma rays were detected using the AGATA array. Lifetimes of excited states were determined using the recoil distance Doppler-shift method, employing the Cologne differential plunger. Results: Lifetimes of low-lying states were measured in the even-mass Cd-102-(108) isotopes. In particular, multiple states with excitation energy up to MeV, belonging to various bands, were populated in approximate to 3 Cd-106 via inelastic scattering. The transition strengths corresponding to the measured lifetimes were compared with those resulting from state-of-the-art beyond-mean-field calculations using the symmetry-conserving configuration-mixing approach. Conclusions: Despite the similarities in the electromagnetic properties of the low-lying states, there is a fundamental structural difference between the ground-state bands in the Z = 48 and Z = 50 isotopes. The comparison between experimental and theoretical results revealed a rotational character of the Cd nuclei, which have prolate-deformed ground states with beta(2) approximate to 0.2. At this deformation Z = 48 becomes a closed-shell configuration, which is favored with respect to the spherical one.
Address [Siciliano, M.] Univ Paris Saclay, Irfu CEA, Gif Sur Yvette, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000704568900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4998
Permanent link to this record
 

 
Author IDS Collaboration (Stryjczyk, M. et al.); Nacher, E.
Title Simultaneous gamma-ray and electron spectroscopy of 182,184,186Hg isotopes Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 1 Pages 014308 - 20pp
Keywords
Abstract (up) Background: The mercury isotopes around N = 104 are a well-known example of nuclei exhibiting shape coex-istence. Mixing of configurations can be studied by measuring the monopole strength rho^2(E0), however, currently the experimental information is scarce and lacks precision, especially for the I^pi -> I^pi (I not = 0) transitions. Purpose: The goals of this study were to increase the precision of the known branching ratios and internal conversion coefficients, to increase the amount of available information regarding excited states in 182,184,186Hg, and to interpret the results in the framework of shape coexistence using different models. Method: The low-energy structures in 182,184,186Hg were populated in the & beta; decay of 182,184,186Tl, produced at ISOLDE, CERN and purified by laser ionization and mass separation. The & gamma;-ray and internal conversion electron events were detected by five germanium clover detectors and a segmented silicon detector, respectively, and correlated in time to build decay schemes.Results: In total, 193, 178, and 156 transitions, including 144, 140, and 108 observed for the first time in a & beta;-decay experiment, were assigned to 182,184,186Hg, respectively. Internal conversion coefficients were determined for 23 transitions, out of which 12 had an E0 component. Extracted branching ratios allowed the sign of the interference term in 182Hg as well as & rho;2(E 0; 0+2 & RARR; 0+1 ) and B(E2; 0+2 & RARR; 2+1 ) in 184Hg to be determined. By means of electron-electron coincidences, the 0+3 state was identified in 184Hg. The experimental results were qualitatively reproduced by five theoretical approaches, the interacting boson model with configuration mixing with two different parametrizations, the general Bohr Hamiltonian, the beyond mean-field model, and the symmetry-conserving configuration-mixing model. However, a quantitative description is lacking. Conclusions: The presence of shape coexistence in neutron-deficient mercury isotopes was confirmed and evidence for the phenomenon existing at higher energies was found. The new experimental results provide important spectroscopic input for future Coulomb excitation studies.
Address [Stryjczyk, M.; Andel, B.; Rezynkina, K.; Van Duppen, P.; De Witte, H.; Huyse, M.] Katholieke Univ Leuven, Inst Kern Stralingsfys, Celestijnenlaan 200D, B-3001 Leuven, Belgium, Email: marek.m.stryjczyk@jyu.fi
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001054768200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5630
Permanent link to this record
 

 
Author n_TOF Collaboration (Moreno-Soto, J. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Constraints on the dipole photon strength for the odd uranium isotopes Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue 2 Pages 024618 - 14pp
Keywords
Abstract (up) Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies. Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest. Methods: The gamma-ray spectra from neutron-capture reactions on the U-234, U-236, and U-238 nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV. Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths. Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
Address [Moreno-Soto, J.; Berthoumieux, E.; Dupont, E.; Gunsing, F.; Bacak, M.] Univ Paris Saclay, CEA Irfu, F-91191 Gif Sur Yvette, France, Email: jmoreno53@us.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000810791100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5278
Permanent link to this record
 

 
Author Clement, E. et al; Domingo-Pardo, C.; Gadea, A.
Title Spectroscopic quadrupole moments in 124Xe Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 1 Pages 014324 - 8pp
Keywords
Abstract (up) Background: The Xe isotopic chain with four valence protons above the Z = 50 shell closure is an ideal laboratory for the study of the evolution of nuclear deformation. At the N = 82 shell closure, 136Xe presents all characteristics of a doubly closed shell nucleus with a spherical shape. In the very neutron-deficient isotopes close to N = 50, the alpha-decay chain of Xe was investigated to probe the radioactive decay properties near the drip-line and the magicity of 100Sn. Additionally, the Xe isotopes present higher order symmetries in the nuclear deformation such as the octupole degree of freedom near N = 60 and N = 90 or O(6) symmetry in stable isotopes.Purpose: The relevance of the O(6) symmetry has been investigated by measuring the spectroscopic quadrupole moment of the first excited states in 124Xe. In the O(6) symmetry limit, the spectroscopic quadrupole moment of collective states is expected to be null.Method: A stable 124Xe beam with energies of 4.03A MeV and 4.11A MeV was used to bombard a natW target at the GANIL facility. Excited states were populated via the safe Coulomb excitation reaction. The collision of the heavy ions with a large Z at low energy make this reaction sensitive to the diagonal E2 matrix element of the excited states. The recoils were detected in the VAMOS++ magnetic spectrometer and the gamma rays in the AGATA tracking array. The least squares fitting code GOSIA was used for the analysis to extract both E2 and M1 transitional and E2 diagonal matrix elements.Results: The rotational ground state band was populated up to the 8+1 state as well as the 2+2 and 4+2 states. Using high precision spectroscopic data to constrain the GOSIA fit, the spectroscopic quadrupole moments of the 2+1 , 4+1 , and 6+1 states were determined for the first time. Conclusions: The spectroscopic quadrupole moments were found to be negative, large, and constant in the ground state band underlining the prolate axially deformed ground state band of 124Xe. The present experimental data confirm that the is broken in 124Xe.
Address [Clement, E.; Lemasson, A.; Rejmund, M.; Jacquot, B.; Ralet, D.; Michelagnoli, C.; de France, G.] CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000941893100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5493
Permanent link to this record
 

 
Author Biswas, S. et al; Perez-Vidal, R.M.
Title Prompt-delayed gamma-ray spectroscopy of neutron-rich In-119, In-121 isotopes Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 102 Issue 1 Pages 014326 - 10pp
Keywords
Abstract (up) Background: The Z = 50 shell closure, near N = 82, is unique in the sense that it is the only shell closure with the spin-orbit partner orbitals, pi g(9/2) and pi g(7/2), enclosing the magic gap. The interaction of the proton hole/particle in the above-mentioned orbitals with neutrons in the nu h(11)(/2) orbital is an important prerequisite to the understanding of the nuclear structure near N = 82 and the nu pi interaction. Purpose: To explore the structural similarity between the high-spin isomeric states in In (Z = 49), Sn (Z = 50), and Sb (Z = 51) isotopes from a microscopic point of view. In addition, to understand the role of a proton hole or particle in the spin-orbit partner orbitals, pi g(9/2) and pi g(7/2), respectively, with neutron holes in the nu h(11)(/2) orbital on these aforementioned isomers. Methods: The fusion and transfer induced fission reaction Be-9(U-238, f) with 6.2 MeV/u beam energy, using a unique setup consisting of AGATA, VAMOS ++, and EXOGAM detectors, was used to populate through the fission process and study the neutron-rich In-119,In-121 isotopes. This setup enabled the prompt-delayed gamma-ray spectroscopy of isotopes in the time range of 100 ns-200 μs. Results: In the odd-A In-119,In-121 isotopes, indications of a short half-life 19/2(-) isomeric state, in addition to the previously known 25/2(+) isomeric state, were observed from the present data. Further, new prompt transitions above the 25/2(+) isomer in In-121 were identified along with reevaluation of its half-life. Conclusions: The experimental data were compared with the theoretical results obtained in the framework of large-scale shell-model calculations in a restricted model space. The <pi g(9/2)nu h(11/2); I vertical bar H vertical bar pi g(9/2) nu h(11/2);I > two-body matrix elements of residual interaction were modified to explain the excitation energies and the B(E2) transition probabilities in the neutron-rich In isotopes. The (i) decreasing trend of E(29/2(+))-E(25/2(+)) in odd-In (with dominant configuration pi g(9/)(2)(-1) nu h(11/2)(-2) and maximum aligned spin of 29/2+) and (ii) increasing trend of E(27/2(+)) – E(23/2(+)) in odd-Sb (with dominant configuration pi g(7/)(2)(+1) nu h(11/2)(-2) and maximum aligned spin of 27/2(+)) with increasing neutron number could be understood as a consequence of hole-hole and particle-hole interactions, respectively.
Address [Biswas, S.; Lemasson, A.; Rejmund, M.; Navin, A.; Kim, Y. H.; Michelagnoli, C.; Clement, E.; de France, G.; Fremont, G.; Goupil, J.; Jacquot, B.; Li, H. J.; Menager, L.; Morel, V; Ropert, J.] GANIL, CEA, DRF, CNRS,IN2P3, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France, Email: lemasson@ganil.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000556554700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4489
Permanent link to this record