|   | 
Details
   web
Records
Author Reig, M.
Title The stochastic axiverse Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 207 - 40pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Compactification and String Models
Abstract (up) In addition to spectacular signatures such as black hole superradiance and the rotation of CMB polarization, the plenitude of axions appearing in the string axiverse may have potentially dangerous implications. An example is the cosmological overproduction of relic axions and moduli by the misalignment mechanism, more pronounced in regions where the signals mentioned above may be observable, that is for large axion decay constant. In this work, we study the minimal requirements to soften this problem and show that the fundamental requirement is a long period of low-scale inflation. However, in this case, if the inflationary Hubble scale is lower than around O(100) eV, no relic DM axion is produced in the early Universe. Cosmological production of some axions may be activated, via the misalignment mechanism, if their potential minimum changes between inflation and today. As a particular example, we study in detail how the maximal-misalignment mechanism dilutes the effect of dangerous axions and allows the production of axion DM in a controlled way. In this case, the potential of the axion that realises the mechanism shifts by a factor increment theta = pi between the inflationary epoch and today, and the axion starts to oscillate from the top of its potential. We also show that axions with masses m(a) similar to O(1 – 100) H-0 realising the maximal-misalignment mechanism generically behave as dark energy with a decay constant that can take values well below the Planck scale, avoiding problems associated to super-Planckian scales. Finally, we briefly study the basic phenomenological implications of the mechanism and comment on the compatibility of this type of maximally-misaligned quintessence with the swampland criteria.
Address [Reig, Mario] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ifis.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000702371800004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4977
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 119 - 48pp
Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology
Abstract (up) In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001165531600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5956
Permanent link to this record
 

 
Author NEXT Collaboration (Ferrario, P. et al); Benlloch-Rodriguez, J.M.; Kekic, M.; Renner, J.; Uson, A.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title Demonstration of the event identification capabilities of the NEXT-White detector Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 052 - 20pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract (up) In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a Th-228 calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 +/- 1.5(stat) +/- 0.3(sys) % for a background acceptance of 20.6 +/- 0.4(stat) +/- 0.3(sys)% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000509259700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4260
Permanent link to this record
 

 
Author Hooper, D.; Leane, R.K.; Tsai, Y.D.; Wegsman, S.; Witte, S.J.
Title A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 163 - 38pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract (up) In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter's elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.
Address [Hooper, Dan; Tsai, Yu-Dai] Fermilab Natl Accelerator Lab, Fermilab, Batavia, IL 60510 USA, Email: dhooper@fnal.gov;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000555828300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4491
Permanent link to this record
 

 
Author Campanario, F.; Kubocz, M.
Title Higgs boson CP-properties of the gluonic contributions in Higgs plus three jet production via gluon fusion at the LHC Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 173 - 16pp
Keywords QCD Phenomenology; Monte Carlo Simulations
Abstract (up) in high energy hadronic collisions, a general CP-violating Higgs boson Phi with accompanying jets can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. In this article, we study the dominant sub-channel gg -> ggg Phi of the gluon fusion production process with triple real emission corrections at order alpha(5)(s). We go beyond the heavy top-quark approximation and include the full mass dependence of the top- and bottom-quark contributions. Furthermore, in a specific model we demonstrate the features of our program and show the impact of bottom-quark loop contributions in combination with large values of tan beta on differential distributions sensitive to CP-rneasurements of the Higgs boson.
Address [Campanario, Francisco] Univ Valencia CSIC, IFIC, Div Theory, E-46100 Valencia, Spain, Email: francisco.campanario@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000344652800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2007
Permanent link to this record