|   | 
Details
   web
Records
Author Chala, M.; Durieux, G.; Grojean, C.; de Lima, L.; Matsedonskyi, O.
Title Minimally extended SILH Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 088 - 32pp
Keywords Higgs Physics; Technicolor and Composite Models
Abstract (up) Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.
Address [Chala, Mikael; Durieux, Gauthier; Grojean, Christophe; de Lima, Leonardo; Matsedonskyi, Oleksii] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: mikael.chala@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000403442600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3173
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J.
Title Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 181-50pp
Keywords Higgs Physics; Perturbative QCD
Abstract (up) Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000531394200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4391
Permanent link to this record
 

 
Author NEXT Collaboration (Fernandes, A.F.M. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 034 - 18pp
Keywords Particle correlations and fluctuations; Photon production; Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract (up) High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: cristinam@uc.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000525257400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4366
Permanent link to this record
 

 
Author Alcaide, J.; Banerjee, S.; Chala, M.; Titov, A.
Title Probes of the Standard Model effective field theory extended with a right-handed neutrino Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 031 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract (up) If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in top decays not yet studied at colliders. Thus, we also design an LHC analysis to explore these signatures in the tt production. Our results are also valid if the right-handed neutrinos are Majorana and long-lived.
Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: julien.alcaide@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000482463900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4120
Permanent link to this record
 

 
Author Chala, M.; Krause, C.; Nardini, G.
Title Signals of the electroweak phase transition at colliders and gravitational wave observatories Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 062 - 29pp
Keywords Beyond Standard Model; Higgs Physics
Abstract (up) If the electroweak phase transition (EWPT) is of strongly first order due to higher dimensional operators, the scale of new physics generating them is at the TeV scale or below. In this case the effective-field theory (EFT) neglecting operators of dimension higher than six may overlook terms that are relevant for the EWPT analysis. In this article we study the EWPT in the EFT to dimension eight. We estimate the reach of the future gravitational wave observatory LISA for probing the region in which the EWPT is strongly first order and compare it with the capabilities of the Higgs measurements via double-Higgs production at current and future colliders. We also match different UV models to the previously mentioned dimension-eight EFT and demonstrate that, from the top-down point of view, the double-Higgs production is not the best signal to explore these scenarios.
Address [Chala, Mikael] Univ Durham, Phys Dept, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: mikael.chala@durham.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438141500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3655
Permanent link to this record