toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dalla Brida, M.; Hollwieser, R.; Knechtli, F.; Korzec, T.; Nada, A.; Ramos, A.; Sint, S.; Sommer, R. url  doi
openurl 
  Title Determination of a(s )(mZ) by the non-perturbative decoupling method Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 12 Pages 1092 - 38pp  
  Keywords  
  Abstract (down) We present the details and first results of a new strategy for the determination of alpha s(mZ) (ALPHA Collaboration et al. in Phys. Lett. B 807:135571, 2020). By simultaneously decoupling 3 fictitious heavy quarks we establish a relation between the A-parameters of three-flavor QCD and pure gauge theory. Very precise recent results in the pure gauge theory (Dalla Brida and Ramos in Eur. Phys. J. C 79(8):720, 2019; Nada and Ramos in Eur Phys J C 81(1):1, 2021) can thus be leveraged to obtain the three flavour A-parameter in units of a common decoupling scale. Connecting this scale to hadronic physics in 3-flavour QCD leads to our result in physical units, A(3)/MS = 336(12) MeV, which translates to alpha s(m(Z)) = 0.11823(84). This is compatible with both the FLAG average (Aoki et al. in FLAG review 2021. arXiv:2111.09849 [hep-lat]) and the previous ALPHA result (ALPHA Collaboration et al., Phys. Rev. Lett. 119(10):102001, 2017), with a comparable, yet still statistics dominated, error. This constitutes a highly non-trivial check, as the decoupling strategy is conceptually very different from the 3-flavour QCD step-scaling method, and so are their systematic errors. These include the uncertainties of the combined decoupling and continuum limits, which we discuss in some detail. We also quantify the correlation between both results, due to some common elements, such as the scale determination in physical units and the definition of the energy scale where we apply decoupling.  
  Address [Dalla Brida, Mattia] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: alberto.ramos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000893933600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5448  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative Ball-Chiu construction of the three-gluon vertex Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 9 Pages 094010 - 30pp  
  Keywords  
  Abstract (down) We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its “kinetic” term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic “zero-crossing” in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations, and are found to capture faithfully the rather complicated curves formed by the data. A similar comparison with results obtained from Schwinger-Dyson equations reveals a fair overall agreement, but with appreciable differences at intermediate energies. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467734600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4010  
Permanent link to this record
 

 
Author R3B Collaboration (Heil, M. et al); Nacher, E. doi  openurl
  Title A new Time-of-flight detector for the (RB)-B-3 setup Type Journal Article
  Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 58 Issue 12 Pages 248 - 19pp  
  Keywords  
  Abstract (down) We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision sigma_Delta E/Delta E of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.  
  Address [Heil, M.; Kelic-Heil, A.; Aumann, T.; Boretzky, K.; Caesar, C.; Fruehauf, J.; Glorius, J.; Heggen, H.; Kiselev, O.; Koch, K.; Koerper, D.; Kurz, N.; Loeher, B.; Litvinov, Y.; Rossi, D.; Savran, D.; Simon, H.; Toernqvist, H. T.; Varga, L.; Wamers, F.] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany, Email: M.Heil@gsi.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000901484400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5456  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F. et al; Villanueva-Domingo, P. url  doi
openurl 
  Title The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence Type Journal Article
  Year 2022 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 259 Issue 2 Pages 61 - 14pp  
  Keywords  
  Abstract (down) We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span similar to 100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N-body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at https://camels-multifield-dataset.readthedocs.io.  
  Address [Villaescusa-Navarro, Francisco; Nicola, Andrina; Spergel, David N.; Matilla, Jose Manuel Zorrilla; Shao, Helen] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA, Email: villaescusa.francisco@gmail.com  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000780035300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5194  
Permanent link to this record
 

 
Author Gisbert, H.; Miralles, V.; Ruiz Vidal, J. url  doi
openurl 
  Title Electric dipole moments from colour-octet scalars Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 077 - 25pp  
  Keywords Beyond Standard Model; CP violation  
  Abstract (down) We present the contributions to electric dipole moments (EDMs) induced by the Yukawa couplings of an additional electroweak doublet of colour-octet scalars. The full set of one-loop diagrams and the enhanced higher-order effects from Barr-Zee diagrams are computed for the quark (chromo-)EDM, along with the two-loop contributions to the Weinberg operator. Using the stringent experimental upper limits on the neutron EDM, constraints on the parameter space of the Manohar-Wise model are derived.  
  Address [Gisbert, Hector] TU Dortmund, Fak Phys, Otto Hahn Str 4, D-44221 Dortmund, Germany, Email: hector.gisbert@tu-dortmund.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000782602900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5198  
Permanent link to this record
 

 
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F. url  doi
openurl 
  Title Two-loop form factors for diphoton production in quark annihilation channel with heavy quark mass dependence Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 105 - 28pp  
  Keywords Higher-Order Perturbative Calculations; Top Quark  
  Abstract (down) We present the computation of the two-loop form factors for diphoton production in the quark annihilation channel. These quantities are relevant for the NNLO QCD corrections to diphoton production at LHC recently presented in [1]. The computation is performed retaining full dependence on the mass of the heavy quark in the loops. The master integrals are evaluated by means of differential equations which are solved exploiting the generalised power series technique.  
  Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130350300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5865  
Permanent link to this record
 

 
Author Fuster, J.; Irles, A.; Melini, D.; Uwer, P.; Vos, M. url  doi
openurl 
  Title Extracting the top-quark running mass using t$(t)over-bar-$+1-jet events produced at the Large Hadron Collider Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 11 Pages 794 - 9pp  
  Keywords  
  Abstract (down) We present the calculation of the next-to-leading order QCD corrections for top-quark pair production in association with an additional jet at hadron colliders, using the modified minimal subtraction scheme to renormalize the top- quark mass. The results are compared to measurements at the Large Hadron Collider run I. In particular, we determine the top-quark running mass from a tit of the theoretical results presented here to the LHC data.  
  Address [Fuster, J.; Melini, D.; Vos, M.] Univ Valencia, IFIC, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: irles@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416366800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3388  
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 6 Pages 459 - 9pp  
  Keywords  
  Abstract (down) We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the first independent cross-check of the NLO QCD corrections presented in the literature before. Our calculation relies on numerical integrations of Feynman integrals, stabilised with integration-by-parts and a Richardson extrapolation to the narrow width approximation. We present results for the total cross section as well as for the invariant Higgs-pair-mass distribution at the LHC, including for the first time a study of the uncertainty due to the scheme and scale choice for the top mass in the loops.  
  Address [Baglio, J.; Streicher, J.] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany, Email: julien.baglio@uni-tuebingen.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000469782000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4037  
Permanent link to this record
 

 
Author Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R. url  doi
openurl 
  Title Analyzing gamma rays of the Galactic Center with deep learning Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 058 - 24pp  
  Keywords gamma ray experiments; dark matter simulations  
  Abstract (down) We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV gamma rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include gamma rays created by the annihilation of dark matter particles and gamma rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured gamma ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of gamma ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.  
  Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: scaron@cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432869300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3582  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Model marginalized constraints on neutrino properties from cosmology Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 4 Pages 043540 - 9pp  
  Keywords  
  Abstract (down) We present robust, model-marginalized limits on both the total neutrino mass (E m1,) and abundances (Neff) to minimize the role of parametrizations, priors and models when extracting neutrino properties from cosmology. The cosmological observations we consider are cosmic microwave background temperature fluctuation and polarization measurements, supernovae Ia luminosity distances, baryon acoustic oscillation observations and determinations of the growth rate parameter from the Data Release 16 of the Sloan Digital Sky Survey IV. The degenerate neutrino mass spectrum (which implies the prior sigma m(1), > 0) is weakly or moderately preferred over the normal and inverted hierarchy possibilities, which imply the priors sigma m(1), > 0.06 and sigma m(1), > 0.1 eV respectively. Concerning the underlying cosmological model, the ACDM minimal scenario is almost always strongly preferred over the possible extensions explored here. The most constraining 95% CL bound on the total neutrino mass in the ACDM + sigma m(1), picture is sigma m(1), < 0.087 eV. The parameter N-eff is restricted to 3.08 +/- 0.17 (68% CL) in the ACDM + Neff model. These limits barely change when considering the ACDM + sigma m(1), + Neff scenario. Given the robustness and the strong constraining power of the cosmological measurements employed here, the model -marginalized posteriors obtained considering a large spectra of nonminimal cosmologies are very close to the previous bounds, obtained within the ACDM framework in the degenerate neutrino mass spectrum. Future cosmological measurements may improve the current Bayesian evidence favoring the degenerate neutrino mass spectra, challenging therefore the consistency between cosmological neutrino mass bounds and oscillation neutrino measurements, and potentially suggesting a more complicated cosmological model and/or neutrino sector.  
  Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862804700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5375  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva