toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author BABAR Collaboration (Lees, J.P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Study of dipion bottomonium transitions and search for the h(b)(1P) state Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 1 Pages 011104 - 9pp  
  Keywords  
  Abstract (up) We study inclusive dipion decays using a sample of 108 x 10(6)Y(3S) events recorded with the BABAR detector. We search for the decay mode Y(3S) -> pi(+)pi(-) h(b)(1P) and find no evidence for the bottomonium spin-singlet state h(b)(1P) in the invariant mass distribution recoiling against the pi(+)pi(-) system. Assuming the h(b)(1P) mass to be 9.900 GeV/c(2), we measure the upper limit on the branching fraction B[Y(3S) -> pi(+)pi(-) h(b)(1P)] < 1.2 x 10(-4), at 90% confidence level. We also investigate the chi(bJ)(2P) -> pi(+)pi(-) chi(bJ)(1P), Y(3S) -> pi(+)pi(-) Y(2S), and Y(2S) -> pi(+)pi(-) Y(1) dipion transitions and present an improved measurement of the branching fraction of the Y(3S) -> pi(+)pi(-) Y(2S) decay and of the Y(3S) – Y(2S) mass difference.  
  Address [Lees, JP; Poireau, V; Tisserand, V] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293182000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 710  
Permanent link to this record
 

 
Author Haider, H.; Ruiz Simo, I.; Sajjad Athar, M.; Vicente Vacas, M.J. url  doi
openurl 
  Title Nuclear medium effects in nu(nu)-nucleus deep inelastic scattering Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 84 Issue 5 Pages 054610 - 13pp  
  Keywords  
  Abstract (up) We study nuclear medium effects in the weak structure functions F(2)(x, Q(2)) and F(3)(x, Q(2)) in the deep inelastic neutrino and antineutrino induced reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding, and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions. Our results are compared with the experimental data of the NuTeV and the CERN Dortmund Heidelberg Saclay Warsaw (CDHSW) collaborations.  
  Address [Haider, H; Athar, MS] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297121900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 809  
Permanent link to this record
 

 
Author Cappiello, L.; Cata, O.; D'Ambrosio, G. url  doi
openurl 
  Title Hadronic light by light contribution to the (g-2)(mu) with holographic models of QCD Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 9 Pages 093006 - 19pp  
  Keywords  
  Abstract (up) We study the anomalous electromagnetic pion form factor F-pi 0 gamma*gamma* with a set of holographic models. By comparing with the measured value of the linear slope, some of these models can be ruled out. From the remaining models, we obtain predictions for the low-energy quadratic slope parameters of F-pi 0 gamma*gamma* , currently out of experimental reach but testable in the near future. We find it particularly useful to encode this low-energy information in a form factor able to satisfy also QCD short-distance constraints. We choose the form factor introduced by D'Ambrosio, Isidori, and Portoles in kaon decays, which has the right short distance for a particular value of the quadratic slope, which is later shown to be compatible with our holographic predictions. We then turn to a determination of the (dominant) pion exchange diagram in the hadronic light by light scattering contribution to the muon anomalous magnetic moment. We quantify the theoretical uncertainty in (g – 2)(mu) coming from the different input we use: QCD short distances, experimental input, and low-energy holographic predictions. We also test the pion-pole approximation. Our final result is a(mu)(pi 0) = 6: 54(25) x 10(-10), where the error is driven by the linear slope of F-pi 0 gamma*gamma* , soon to be measured with precision at KLOE-2. Our numerical analysis also indicates that large values of the magnetic susceptibility chi 0 are disfavored, therefore pointing at a mild effect from the pion off-shellness. However, in the absence of stronger bounds on chi 0, an additional (10-15)% systematic uncertainty on the previous value for a(mu)(pi 0) cannot be excluded.  
  Address [Cappiello, Luigi] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290479200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 625  
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M. url  doi
openurl 
  Title Minimal models with light sterile neutrinos Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 105  
  Keywords  
  Abstract (up) We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n(R) gauge singlet fermions (“right-handed neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n(R) = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n(R) = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293741500041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 760  
Permanent link to this record
 

 
Author Donini, A.; Gomez-Cadenas, J.J.; Meloni, D. url  doi
openurl 
  Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 095 - 16pp  
  Keywords Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract (up) We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.  
  Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287939200023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva