|   | 
Details
   web
Records
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.
Title Gluon dynamics from an ordinary differential equation Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 1 Pages 54 - 20pp
Keywords
Abstract (down) We present a novel method for computing the nonperturbative kinetic term of the gluon propagator from an ordinary differential equation, whose derivation hinges on the central hypothesis that the regular part of the three-gluon vertex and the aforementioned kinetic term are related by a partial Slavnov-Taylor identity. The main ingredients entering in the solution are projection of the three-gluon vertex and a particular derivative of the ghost-gluon kernel, whose approximate form is derived from a Schwinger-Dyson equation. Crucially, the requirement of a pole-free answer determines the initial condition, whose value is calculated from an integral containing the same ingredients as the solution itself. This feature fixes uniquely, at least in principle, the form of the kinetic term, once the ingredients have been accurately evaluated. In practice, however, due to substantial uncertainties in the computation of the necessary inputs, certain crucial components need be adjusted by hand, in order to obtain self-consistent results. Furthermore, if the gluon propagator has been independently accessed from the lattice, the solution for the kinetic term facilitates the extraction of the momentum-dependent effective gluon mass. The practical implementation of this method is carried out in detail, and the required approximations and theoretical assumptions are duly highlighted.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000611993400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4730
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L.
Title Quantum algorithm for Feynman loop integrals Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 100 - 32pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract (down) We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.
Address [Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Vale Silva, Luiz] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000796990400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5230
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J.
Title Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 9 Pages 094039 - 19pp
Keywords
Abstract (down) We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.
Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498877900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4208
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V.
Title Going beyond Top EFT Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 107 - 29pp
Keywords SMEFT; Dark Matter at Colliders; Supersymmetry
Abstract (down) We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.
Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001205498200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6108
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.; Urtasun-Elizari, J.
Title Higgs boson production at the LHC: fast and precise predictions in QCD at higher orders Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 5 Pages 492 - 8pp
Keywords
Abstract (down) We present a new numerical program, HTurbo, which provides fast and numerically precise predictions for Higgs boson production cross sections. The present version of the code implements the perturbative QCD expansion up to the next-to-next-to-leading order also combined with the resummation of the large logarithmic corrections at small transverse momenta up to next-to-next-to-leading logarithmic accuracy and it includes the Higgs boson production through gluon fusion and decay in two photons with the full dependence on the final-state kinematics. Arbitrary kinematical cuts can be applied to the final states in order to obtain fiducial cross sections and associated kinematical distributions. We present a benchmark comparison with the predictions obtained with the numerical programs HRes and HNNLO programs for which HTurbo represents an improved reimplementation.
Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000800789000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5234
Permanent link to this record
 

 
Author Elor, G.; Escudero, M.; Nelson, A.E.
Title Baryogenesis and dark matter from B mesons Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 3 Pages 035031 - 18pp
Keywords
Abstract (down) We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and subsequent decays. This setup is testable at hadron colliders and B factories. In the early universe, decays of a long lived particle produce B mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by dinucleon decay, does not require a high reheat temperature, and would have unique experimental signals-a positive leptonic asymmetry in B meson decays, a new decay of B mesons into a baryon and missing energy, and a new decay of b-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism.
Address [Elor, Gilly; Nelson, Ann E.] Univ Washington, Dept Phys, Box 1560, Seattle, WA 98195 USA, Email: gelor@uw.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000459208700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3916
Permanent link to this record
 

 
Author Aparisi, J.; Fuster, J.; Irles, A.; Rodrigo, G.; Vos, M.; Yamamoto, H.; Hoang, A.; Lepenik, C.; Spira, M.; Tairafune, S.; Yonamine, R.
Title m(b) at m(H): The Running Bottom Quark Mass and the Higgs Boson Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 12 Pages 122001 - 7pp
Keywords
Abstract (down) We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: -0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory. Confronting this result and mb(mb) from low-energy measurements and mb(mZ) from Z-pole data, with the prediction of the scale evolution of the renormalization group equations, we find strong evidence for the “running” of the bottom quark mass.
Address [Aparisi, Javier; Fuster, Juan; Irles, Adrian; Rodrigo, German; Vos, Marcel; Yamamoto, Hitoshi] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000782852800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5200
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title 3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources Type Journal Article
Year 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 905 Issue 1 Pages 76 - 14pp
Keywords Gamma-ray astronomy; Gamma-ray observatories; High energy astrophysics; Cosmic ray sources
Abstract (down) We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at >= 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1 degrees of previously detected TeV emitters, and 20 sources that are more than 1 degrees away from any previously detected TeV source. Of these 20 new sources, 14 have a potential counterpart in the fourth Fermi Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the Australia Telescope National Facility (ATNF) pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.; Sinnis, G.; Ukwatta, T. N.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: hfleisch@mtu.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000599109900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4639
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title Anomaly Awareness Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue 2 Pages 053 - 24pp
Keywords
Abstract (down) We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.
Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001048488200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5610
Permanent link to this record
 

 
Author Ikeno, N.; Liang, W.H.; Toledo, G.; Oset, E.
Title Interpretation of the Omega(c) -> pi(+) Omega(2012) -> pi(+) ((K)over-bar Xi) relative to Omega(c) -> pi(+) (K)over-bar Xi from the Omega (2012) molecular perspective Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 034022 - 10pp
Keywords
Abstract (down) We present a mechanism for Omega(c) -> pi(+)Omega (2012) production through an external emission Cabibbo favored weak decay mode, where the Omega (2012) is dynamically generated from the interaction of (K) over bar Xi(*) (1530) and eta Omega, with (K) over bar Xi as the main decay channel. The Omega (2012) decays later to (K) over bar Xi. in this picture, with results compatible with Belle data. As a consequence, one can evaluate the direct decay Omega(0)(c) -> pi K-+(-)Xi(0) and the decay Omega(0)(c) -> pi(+)(K) over bar Xi* pi(+)eta Omega with direct couplings of (K) over bar Xi* and eta Omega to K-Xi(0). We show that, within uncertainties and using data from a recent Belle measurement, all three channels account for about (12-20)% of the total Omega(c) -> pi K-+(-)Xi(0) decay rate. The consistency of the molecular picture with all the data is established by showing that Omega(c) -> Xi(0)(K) over bar*(0) -> Xi K-0(-)pi(+) and Omega(c) -> pi(+)Omega* -> pi K-+(-Xi 0) account for about 85% of the total Omega(c) -> pi K-+(-)Xi(0).
Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000889555900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5430
Permanent link to this record