|   | 
Details
   web
Records
Author Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F.
Title Topological sampling through windings Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 873 - 12pp
Keywords
Abstract (down) We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).
Address [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000703880600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4979
Permanent link to this record
 

 
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title Pion-to-vacuum vector and axial vector amplitudes and weak decays of pions in a magnetic field Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 5 Pages 054031 - 18pp
Keywords
Abstract (down) We propose a model-independent parametrization for the one-pion-to-vacuum matrix elements of the vector and axial vector hadronic currents in the presence of an external uniform magnetic field. It is shown that, in general, these hadronic matrix elements can be written in terms of several gauge covariant Lorentz structures and form factors. Within this framework we obtain a general expression for the weak decay pi(- )-> l(nu)over bar(l) and discuss the corresponding limits of strong and weak external magnetic fields.
Address [Coppola, M.; Scoccola, N. N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000462915500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3962
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title The dark side of flipped trinification Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 143 - 31pp
Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry
Abstract (down) We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000432044000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3576
Permanent link to this record
 

 
Author Aitken, K.; McKeen, D.; Neder, T.; Nelson, A.E.
Title Baryogenesis from oscillations of charmed or beautiful baryons Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 7 Pages 075009 - 15pp
Keywords
Abstract (down) We propose a model for CP-violating oscillations of neutral, heavy-flavor baryons into antibaryons at rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon violation suppresses neutron oscillations and baryon-number-violating nuclear decays to experimentally allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters where CP-violating baryon oscillations at a temperature of a few MeV could result in the observed asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for baryogenesis is potentially testable at Belle II via decays of heavy-flavor baryons into an exotic neutral fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The lightest of these fermions is typically long lived on collider time scales and may be produced in decays of bottom and possibly charmed hadrons.
Address [Aitken, Kyle; Nelson, Ann E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA, Email: kaitken17@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000412516100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3321
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F.
Title Linear seesaw mechanism from dark sector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 046 - 18pp
Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract (down) We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001184730300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5982
Permanent link to this record