|   | 
Details
   web
Records
Author Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; Kennea, J.A.; Marshall, F.E.; Mastichiadis, A.; Osborne, J.P.; Santander, M.; Tohuvavohu, A.; Turley, C.F.
Title A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration Type Journal Article
Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 864 Issue 1 Pages 84 - 16pp
Keywords Lacertae objects: general; BL Lacertae objects: individual (TXS 0506+056); galaxies: active; gamma rays: galaxies; neutrinos; radiation mechanisms: non-thermal
Abstract (down) Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.
Address [Keivani, A.; Murase, K.; DeLaunay, J. J.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: keivani@psu.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000443293800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3708
Permanent link to this record
 

 
Author Kaya, L. et al; Gadea, A.
Title Millisecond 23/2(+) isomers in the N=79 isotones Xe-133 and Ba-135 Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 98 Issue 5 Pages 054312 - 16pp
Keywords
Abstract (down) Detailed information on isomeric states in A approximate to 135 nuclei is exploited to shell-model calculations in the region northwest of doubly magic nucleus Sn-132. The N = 79 isotones Xe-133 and Ba-135 are studied after multinucleon transfer in the Xe-136 + Pb-208 reaction employing the high-resolution Advanced GAmma Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and in a pulsed-beam experiment at the FN tandem accelerator of the University of Cologne Germany utilizing a Be-9 + Te-130 fusion-evaporation reaction at a beam energy of 40 MeV. Isomeric states are identified via delayed gamma-ray spectroscopy. Hitherto tentative excitation energy spin and parity assignments of the 2017-keV J(pi) = 23/2(+) isomer in Xe-133 are confirmed and a half-life of T-1/2 = 8.64(13) ms is measured. The 2388-keV state in Ba-135. is identified as a J(pi) = 23/2(+) isomer with a half-life of 1.06(4) ms. The new results show a smooth onset of isomeric J(pi) = 23/2(+) states along the N = 79 isotones and close a gap in the high-spin systematics towards the recently investigated J(pi) = 23/2(+) isomer in Nd-139. The resulting systematics of M2 reduced transition probabilities is discussed within the of the nuclear shell model. Latest large-scale shell-model calculations employing the SN100PN, GCN50:82, SN100-KTH and a realistic effective interaction reproduce the experimental findings generally well and give insight into the structure of the isomers.
Address [Kaya, L.; Vogt, A.; Reiter, P.; Mueller-Gatermann, C.; Arnswald, K.; Birkenbach, B.; Blazhev, A.; Droste, M.; Eberth, J.; Fransen, C.; Hadynska-Klek, K.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Rosiak, D.; Saed-Samii, N.; Seidlitz, M.; Weinert, M.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000450549200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3809
Permanent link to this record
 

 
Author Olivares-Del Campo, A.; Boehm, C.; Palomares-Ruiz, S.; Pascoli, S.
Title Dark matter-neutrino Interactions through the lens of their cosmological Implications Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 075039 - 23pp
Keywords
Abstract (down) Dark matter and neutrinos provide the two most compelling pieces of evidence for new physics beyond the Standard Model of particle physics, but they are often treated as two different sectors. The aim of this paper is to determine whether there are viable particle physics frameworks in which dark matter can be coupled to active neutrinos. We use a simplified model approach to determine all possible scenarios where there is such a coupling and study their astrophysical and cosmological signatures. We find that dark matter-neutrino interactions have an impact on structure formation and lead to indirect detection signatures when the coupling between dark matter and neutrinos is sufficiently large. This can be used to exclude a large fraction of the parameter space. In most cases, dark matter masses up to a few MeV and mediator masses up to a few GcV are ruled out. The exclusion region can be further extended when dark matter is coupled to a spin-1 mediator or when the dark matter particle and the mediator are degenerate in mass if the mediator is a spin-0 or spin-1/2 particle.
Address [Olivares-Del Campo, Andres; Boehm, Celine; Pascoli, Silvia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: andres.olivares@durham.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432959900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3590
Permanent link to this record
 

 
Author Caron, S.; Casas, J.A.; Quilis, J.; Ruiz de Austri, R.
Title Anomaly-free dark matter with harmless direct detection constraints Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 126 - 24pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract (down) Dark matter (DM) interacting with the SM fields via a Z-boson (Z-portal') remains one of the most attractive WIMP scenarios, both from the theoretical and the phenomenological points of view. In order to avoid the strong constraints from direct detection and dilepton production, it is highly convenient that the Z has axial coupling to DM and leptophobic couplings to the SM particles, respectively. The latter implies that the associated U(1) coincides with baryon number in the SM sector. In this paper we completely classify the possible anomaly-free leptophobic Z with minimal dark sector, including the cases where the coupling to DM is axial. The resulting scenario is very predictive and perfectly viable from the present constraints from DM detection, EW observables and LHC data (di-lepton, di-jet and mono-jet production). We analyze all these constraints, obtaining the allowed areas in the parameter space, which generically prefer mZ less than or similar to 500 GeV, apart from resonant regions. The best chances to test these viable areas come from future LHC measurements.
Address [Caron, S.] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: scaron@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000454274400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3856
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M.
Title Neutrino oscillations and non-standard Interactions Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 10 - 34pp
Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics
Abstract (down) Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000426198100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3502
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Zeppenfeld, D.
Title Z gamma production in vector-boson scattering at next-to-leading order QCD Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 160 - 19pp
Keywords NLO Computations; Phenomenological Models
Abstract (down) Cross sections and differential distributions for Z gamma production in association with two jets via vector boson fusion are presented at next-to-leading order in QCD. The leptonic decays of the Z boson with full off-shell effects and spin correlations are taken into account. The uncertainties due to different scale choices and pdf sets are studied. Furthermore, we analyze the effect of including anomalous quartic gauge couplings at NLO QCD.
Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Theory Div, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000423794800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3469
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title Neutrinos, DUNE and the world best bound on CPT invariance Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 780 Issue Pages 631-637
Keywords Neutrino mass and mixing; Neutrino oscillation; CPT
Abstract (down) CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.
Address [Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000432187800085 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3620
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 063 - 26pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract (down) CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.
Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000449817300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3801
Permanent link to this record
 

 
Author Alcaide, J.; Chala, M.; Santamaria, A.
Title LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 779 Issue Pages 107-116
Keywords Lepton-number violation; LHC searches; Higgs sector; Doubly-charged scalars
Abstract (down) Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.
Address [Chala, Mikael] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: mikael.chala@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000429098900012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3565
Permanent link to this record
 

 
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title The NEXT White (NEW) detector Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P12010 - 38pp
Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers
Abstract (down) Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.
Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000452463500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3833
Permanent link to this record