toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khosa, C.K.; Mars, L.; Richards, J.; Sanz, V. url  doi
openurl 
  Title Convolutional neural networks for direct detection of dark matter Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 9 Pages 095201 - 20pp  
  Keywords dark matter; dark matter detection; neural networks; xenon1T; WIMPs  
  Abstract (up) The XENON1T experiment uses a time projection chamber (TPC) with liquid xenon to search for weakly interacting massive particles (WIMPs), a proposed dark matter particle, via direct detection. As this experiment relies on capturing rare events, the focus is on achieving a high recall of WIMP events. Hence the ability to distinguish between WIMP and the background is extremely important. To accomplish this, we suggest using convolutional neural networks (CNNs); a machine learning procedure mainly used in image recognition tasks. To explore this technique we use XENON collaboration open-source software to simulate the TPC graphical output of dark matter signals and main backgrounds. A CNN turns out to be a suitable tool for this purpose, as it can identify features in the images that differentiate the two types of events without the need to manipulate or remove data in order to focus on a particular region of the detector. We find that the CNN can distinguish between the dominant background events (ER) and 500 GeV WIMP events with a recall of 93.4%, precision of 81.2% and an accuracy of 87.2%.  
  Address [Khosa, Charanjit K.; Mars, Lucy; Richards, Joel; Sanz, Veronica] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: charanjit.kaur@sussex.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555607800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4485  
Permanent link to this record
 

 
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title The neutron background of the XENON100 dark matter search experiment Type Journal Article
  Year 2013 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 40 Issue 11 Pages 115201 - 17pp  
  Keywords  
  Abstract (up) TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.  
  Address [Aprile, E.; Budnik, R.; Choi, B.; Contreras, H.; Giboni, K-L; Goetzke, L. W.; Lim, K. E.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: alexkish@physik.uzh.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325766300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1684  
Permanent link to this record
 

 
Author Particle Data Group (Nakamura, K. et al); Hernandez-Rey, J.J. url  doi
openurl 
  Title Review of Particle Physics Type Journal Article
  Year 2010 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 37 Issue 7a Pages 1-1422  
  Keywords  
  Abstract (up) This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.1b1.gov.  
  Address [Nakamura, K.; Murayama, H.; Watari, T.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778583, Japan  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282072100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 248  
Permanent link to this record
 

 
Author Boggia, M.; Cruz-Martinez, J.M.; Frellesvig, H.; Glover, N.; Gomez-Ambrosio, R.; Gonella, G.; Haddad, Y.; Ilnicka, A.; Jones, S.; Kassabov, Z.; Krauss, F.; Megy, T.; Melini, D.; Napoletano, D.; Passarino, G.; Patel, S.; Rodriguez-Vazquez, M.; Wolf, T. url  doi
openurl 
  Title The HiggsTools handbook: a beginners guide to decoding the Higgs sector Type Journal Article
  Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 45 Issue 6 Pages 065004 - 152pp  
  Keywords LHC physics; Higgs boson; new physics searches; effective field theories; Higgs momentum distributions  
  Abstract (up) This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1-29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30-61) conclude that it is compatible with the Higgs boson of the standard model (SM) within present precision. So far the LHC experiments have given no direct evidence for any physical phenomena that cannot be described by the SM. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. Such a framework should be applicable to measurements in all sectors of particle physics, not only LHC Higgs measurements but also electroweak precision data, etc. We critically review the use of the k-framework, fiducial and simplified template cross sections, effective field theories, pseudoobservables and phenomenological Lagrangians. Some of the concepts presented here are well known and were used already at the time of the large electron-positron collider (LEP) experiment. However, after years of theoretical and experimental development, these techniques have been refined, and we describe new tools that have been introduced in order to improve the comparison between theory and experimental data. In the second part of the report, we propose Phi(eta)* as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. The Phi(eta)* variable depends on measurements of the angular directions and rapidities of the two Higgs decay products rather than the energies, and exploits the information provided by the calorimeter in the detector. We show that, even without tracking information, the experimental resolution for Phi(eta)* is better than that of the transverse momentum of the photon pair, particularly at low transverse momentum. We make a detailed study of the phenomenology of the Phi(eta)* variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations. We consider the theoretical uncertainties associated with both p TH and Phi(eta)* distributions. Unlike the transverse momentum distribution, the Phi(eta)* distribution is well predicted using the Higgs effective field theory in which the top quark is integrated out-even at large values of Phi(eta)*-thereby making this a better observable for extracting the parameters of the Higgs interaction. In contrast, the potential of the Phi(eta)* distribution as a probe of NP is rather limited, since although the overall rate is affected by the presence of additional heavy fields, the shape of the Phi(eta)* distribution is relatively insensitive to heavy particle thresholds.  
  Address [Boggia, M.; Gonella, G.; Jones, S.; Megy, T.] Albert Ludwigs Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany, Email: raquel.gomez-ambrosio@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434094000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3604  
Permanent link to this record
 

 
Author Correia, F.C. url  doi
openurl 
  Title Fundamentals of the 3-3-1 model with heavy leptons Type Journal Article
  Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 45 Issue 4 Pages 043001 - 31pp  
  Keywords 3-3-1 models; heavy leptons; heavy quarks  
  Abstract (up) This work is a brief presentation of the theory based on the SU(3)(c) circle times SU(3)(L) circle times U(1)(X) gauge group in the presence of heavy leptons. Recent studies [1] have considered a set of four possible variants for the 3-3-1HL, whose content arises according to the so-denoted variable beta. Since it has been argued about the presence of stable charged particles in this sort of model, we divide the different sectors of the Lagrangian between universal and specific vertices, and conclude that the omission of beta-dependent terms in the potential may induce discrete symmetry for the versions defined by vertical bar beta vertical bar = root 3 . In the context of vertical bar beta vertical bar = 1/root 3, where the new degrees of freedom have the same standard electric charges, additional Yukawa interactions may create decay channels into the SM sector. Furthermore, motivated by a general consequence of the Goldstone theorem, a method of diagonalization by parts is introduced in the Scalar sector and provides a clarification on the definition of mass eigenstates. In summary, we develop the most complete set of terms allowed by the symmetry group and resolve their definitive pieces in order to justify the model description present in the literature.  
  Address [Correia, F. C.] Sao Paulo State Univ, UNESP, Inst Theoret Phys, BR-01140070 Sao Paulo, SP, Brazil, Email: ccorreia@ift.unesp.br  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425634400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3504  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva