toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G. url  doi
openurl 
  Title Tree-loop duality relation beyond single poles Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 025 - 24pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract (down) We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.  
  Address Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany, Email: isabella.bierenbaum@desy.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317521200025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1418  
Permanent link to this record
 

 
Author Hoang, A.H.; Ruiz-Femenia, P.; Stahlhofen, M. url  doi
openurl 
  Title Renormalization group improved bottom mass from (gamma) sum rules at NNLL order Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 188 - 30pp  
  Keywords Heavy Quark Physics; Sum Rules; QCD  
  Abstract (down) We determine the bottom quark mass from non-relativistic large-n gamma sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of alpha(s) ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic alpha(s) ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling (alpha(s) (M-Z) = 0.1183 +/- 0.0010) we obtain M-b(1S) = 4.755 +/- 0.057(pert) +/- 0.009 alpha(s) +/- 0.003(exp) GeV for the bottom 1S mass and (m) over bar (b) ((m) over bar (b)) = 4.235 +/- 0.055(pert) +/- 0.003(exp) GeV for the bottom (MS) over bar mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.  
  Address [Hoang, Andre H.; Ruiz-Femenia, Pedro; Stahlhofen, Maximilian] Univ Vienna, Fac Phys, A-1090 Vienna, Austria, Email: Andre.Hoang@univie.ac.at;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310851300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1231  
Permanent link to this record
 

 
Author Dehnadi, B.; Hoang, A.H.; Mateu, V.; Zebarjad, S.M. url  doi
openurl 
  Title Charm mass determination from QCD charmonium sum rules at order alpha(3)(s) Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 103 - 56pp  
  Keywords Sum Rules; QCD  
  Abstract (down) We determine the (MS) over bar charm quark mass from a charmonium QCD sum rules analysis. On the theoretical side we use input from perturbation theory at O (alpha(3)(s)). Improvements with respect to previous O (alpha(3)(s)) analyses include (1) an account of all available e(+)e(-) hadronic cross section data and (2) a thorough analysis of perturbative uncertainties. Using a data clustering method to combine hadronic cross section data sets from di ff erent measurements we demonstrate that using all available experimental data up to c. m. energies of 10 : 538 GeV allows for determinations of experimental moments and their correlations with small errors and that there is no need to rely on theoretical input above the charmonium resonances. We also show that good convergence properties of the perturbative series for the theoretical sum rule moments need to be considered with some care when extracting the charm mass and demonstrate how to set up a suitable set of scale variations to obtain a proper estimate of the perturbative uncertainty. As the fi nal outcome of our analysis we obtain (m(c)) over bar((m(c)) over bar) = 1 : 282 +/- (0.009)(stat) +/- (0.009)(syst) +/- (0.019)(pert) +/- (0.010)(alpha s) +/- (0.002)(< GG >) GeV. The perturbative error is an order of magnitude larger than the one obtained in previous O (alpha(3)(s)) sum rule analyses.  
  Address [Dehnadi, Bahman; Zebarjad, S. Mohammad] Shiraz Univ, Dept Phys, Shiraz 71454, Iran, Email: bahman.dehnadi@univie.ac.at;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324653800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1626  
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 113 - 44pp  
  Keywords Lattice QCD; Kaon Physics  
  Abstract (down) We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.  
  Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000640574400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4789  
Permanent link to this record
 

 
Author Greynat, D.; de Rafael, E.; Vulvert, G. url  doi
openurl 
  Title Asymptotic behaviour of pion-pion total cross-sections Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 107 - 21pp  
  Keywords QCD Phenomenology; Phenomenological Models  
  Abstract (down) We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the pi pi total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log(2)s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for pi(+)pi(-), pi(+/-)pi(0) and pi(0)pi(0) scattering within the framework of the constituent chiral quark model (C chi QM) in the limit of a large number of colours N-c and discuss their asymptotic behaviours. The same pi pi cross sections are also discussed within the general framework of Large-N-c QCD and we show that it is possible to make an Ansatz for the isospin I = 1 and I = 0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N-c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the sigma(total)(pi +/-pi 0)(s) cross section predicted by the CxQM with the high energy behaviour predicted by the Large-N-c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp scattering total cross sections.  
  Address [Greynat, David] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy, Email: david.greynat@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333803000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1747  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva