|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Measurement of polarization amplitudes and CP asymmetries in B-0 -> phi K*(892)(0) Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 069 - 24pp
Keywords CP violation; Hadron-Hadron Scattering; Polarization; B physics; Flavour Changing Neutral Currents
Abstract (up) An angular analysis of the decay B (0) -> phi K (*)(892)(0) is reported based on a pp collision data sample, corresponding to an integrated luminosity of 1.0 fb(-1), collected at a centre-of-mass energy of root S = 7 TeV with the LHCb detector. The P-wave amplitudes and phases are measured with a greater precision than by previous experiments, and confirm about equal amounts of longitudinal and transverse polarization. The S-wave K+ pi(-) and K+ K- contributions are taken into account and found to be significant. A comparison of the B (0) -> phi K (*)(892)(0) and results shows no evidence for direct CP violation in the rate asymmetry, in the triple-product asymmetries or in the polarization amplitudes and phases.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Hicheur, A.; Massafferri, A.; Nasteva, I.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: dlambert@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000336406400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1794
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Measurement of CP asymmetries and polarisation fractions in B-s(0) -> K*(0)(K)over-bar*(0) decays Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 166 - 28pp
Keywords CP violation; Hadron-Hadron Scattering; Polarization; B physics; Flavour Changing Neutral Currents
Abstract (up) An angular analysis of the decay B-s(0) -> K*(0)(K) over bar*(0) is performed using pp collisions corresponding to an integrated luminosity of 1.0 fb(-1) collected by the LHCb experiment at a centre-of-mass energy root s = 7TeV. A combined angular and mass analysis separates six helicity amplitudes and allows the measurement of the longitudinal polarisation fraction f(L) = 0.201 +/- 0.057 (stat.) +/- 0.040 (syst.) for the B-s(0) -> K*(892)(0)(K) over bar*(892)(0) decay. A large scalar contribution from the K*(0) (1430) and K*(0) (800) resonances is found, allowing the determination of additional CP asymmetries. Triple product and direct CP asymmetries are determined to be compatible with the Standard Model expectations. The branching fraction B(B-s(0) -> K*(892)(0)(K) over bar*(892)(0)) is measured to be (10.8 +/- 2.1 (stat.) +/- 1.4 (syst.) +/- 0.6 (f(d)/f(s))) x 10(-6).
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: paula.alvarez@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000358928400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2324
Permanent link to this record
 

 
Author Centelles Chulia, S.; Trautner, A.
Title Asymmetric tri-bi-maximal mixing and residual symmetries Type Journal Article
Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 35 Issue 35 Pages 2050292 - 15pp
Keywords CP symmetry; CP violation; tri-bi-maximal mixing; asymmetrix texture; grand unification; neutrino masses; neutrino mixing; neutrinoless double beta decay
Abstract (up) Asymmetric tri-bi-maximal mixing is a recently proposed, grand unified theory (GUT) based, flavor mixing scheme. In it, the charged lepton mixing is fixed by the GUT connection to down-type quarks and a T-13 flavor symmetry, while neutrino mixing is assumed to be tri-bi-maximal (TBM) with one additional free phase. Here we show that this additional free phase can be fixed by the residual flavor and CP symmetries of the effective neutrino mass matrix. We discuss how those residual symmetries can be unified with T-13 and identify the smallest possible unified flavor symmetries, namely (Z(13)xZ(13))(sic)D-12 and (Z(13)xZ(13))(sic)S-4. Sharp predictions are obtained for lepton mixing angles, CP violating phases and neutrinoless double beta decay.
Address [Chulia, Salvador Centelles] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000599872300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4648
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 063 - 26pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract (up) CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.
Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000449817300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3801
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M.
Title Neutrino oscillations and non-standard Interactions Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 10 - 34pp
Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics
Abstract (up) Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000426198100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3502
Permanent link to this record